Skip to main content

Advertisement

Log in

Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water

  • POPs Workshop, ten years after the signature of the Stockholm convention
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background

The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent organic pollutants (POPs) targeted by the Stockholm Convention are nonpolar or weakly polar, hydrophobic substances, making them ideal targets for sampling in water using PSDs. Widely used nonpolar PSDs include semi-permeable membrane devices, low-density polyethylene and silicone rubber.

Results and discussion

The inter-laboratory variation of equilibrium partition constants between PSD and water is mostly 0.2–0.5 log units, depending on the exact matrix used. The sampling rate of PSDs is best determined by using performance reference compounds during field deployment. The major advantage of PSDs over alternative matrices applicable in trend monitoring (e.g. sediments or biota) is that the various sources of variance including analytical variance and natural environmental variance can be much better controlled, which in turn results in a reduction of the number of analysed samples required to obtain results with comparable statistical power.

Conclusion

Compliance checking with regulatory limits and analysis of temporal and spatial contaminant trends are two possible fields of application. In contrast to the established use of nonpolar PSDs, polar samplers are insufficiently understood, but research is in progress to develop PSDs for the quantitative assessment of polar waterborne contaminants. In summary, PSD-based monitoring is a mature technique for the measurement of aqueous concentrations of apolar POPs, with a well-defined accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aberg A, MacLeod M, Wiberg K (2008) Physical-chemical property data for dibenzo-p-dioxin (DD), dibenzofuran (DF), and chlorinated DD/Fs: a critical review and recommended values. J Phys Chem Ref Data 37(4):1997–2008. doi:10.1063/1.3005673

    Article  Google Scholar 

  • Adams RG, Lohmann R, Fernandez LA, Macfarlane JK, Gschwend PM (2007) Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol 41(4):1317–1323

    Article  CAS  Google Scholar 

  • Allan IJ, Booij K, Paschke A, Vrana B, Mills GA, Greenwood R (2009) Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ Sci Technol 43(14):5383–5390. doi:10.1021/es900608w

    Article  CAS  Google Scholar 

  • Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, Goddard JP, Gravell A (2007) Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS). In: Greenwood R, Mills G, Vrana B (eds) Passive sampling techniques in environmental monitoring. Elsevier, Amsterdam, pp 171–197

    Chapter  Google Scholar 

  • Arp HPH, Endo S, Goss KU (2010) Comment on "Assessment of PDMS-water partition coefficients: Implications for passive environmental sampling of hydrophobic compounds". Environ Sci Technol 44(22):8787–8788

    Article  CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11(10):737–747

    Article  CAS  Google Scholar 

  • Beyer A, Wania F, Gouin T, Mackay D, Matthies M (2002) Selecting internally consistent physicochemical properties of organic compounds. Environ Toxicol Chem 21(5):941–953

    Article  CAS  Google Scholar 

  • Booij K, Hoedemaker JR, Bakker JF (2003a) Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ Sci Technol 37(18):4213–4220

    Article  CAS  Google Scholar 

  • Booij K, Hofmans HE, Fischer CV, Van Weerlee EM (2003b) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37(2):361–366

    Article  CAS  Google Scholar 

  • Booij K, Sleiderink HM, Smedes F (1998) Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ Toxicol Chem 17(7):1236–1245

    Article  CAS  Google Scholar 

  • Booij K, Smedes F (2010) An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ Sci Technol 44(17):6789–6794. doi:10.1021/es101321v

    Article  CAS  Google Scholar 

  • Booij K, Smedes F, van Weerlee EM, Honkoop PJC (2006) Environmental monitoring of hydrophobic organic contaminants: the case of mussels versus semipermeable membrane devices. Environ Sci Technol 40(12):3893–3900. doi:10.1021/es052492r

    Article  CAS  Google Scholar 

  • Booij K, Vrana B, Huckins JN (2007) Theory, modelling and calibration of passive samplers used in water monitoring. In: Greenwood R, Mills GA, Vrana B (eds) Passive sampling techniques in environmental monitoring. Elsevier, Amsterdam, pp 141–169

    Chapter  Google Scholar 

  • Boudreau BP, Guinasso NL (1982) The influence of a diffusive sublayer on accretion, dissolution, and diagenisis at the sea floor. In: Fanning KA, Manheim FT (eds) The dynamic environment of the ocean floor. Lexington Books, Toronto, pp 115–145

    Google Scholar 

  • Cornelissen G, Pettersen A, Broman D, Mayer P, Breedveld GD (2008) Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ Toxicol Chem 27(3):499–508

    Article  CAS  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowen CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  Google Scholar 

  • Difilippo EL, Eganhouse RP (2010) Assessment of PDMS-water partition coefficients: Implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44(18):6917–6925. doi:10.1021/es101103x

    Article  CAS  Google Scholar 

  • Endo S, Hale SE, Goss KU, Arp HP (2011) Equilibrium partition coefficients of diverse polar and nonpolar organic compounds to polyoxymethylene (POM) passive sampling devices. Environ Sci Technol 45(23):10124–10132

    Article  CAS  Google Scholar 

  • EU (2000) Directive 2000/60/ec of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Union L327:1-72

    Google Scholar 

  • EU (2009) Guidance on surface water chemical monitoring under the water framework directive. Common implementation strategy for the water framework directive (2000/60/ec); guidance document no. 19. vol http://ec.europa.eu/environment/water/water-framework/facts_figures/guidance_docs_en.htm. Office for Official Publications of the European Communities, Luxembourg

  • EU (2010) Guidance on chemical monitoring of sediment and biota under the water framework directive; common implementation strategy for the water framework directive (2000/60/ec). Office for Official Publications of the European Communities, Luxembourg

  • Fernandez LA, Harvey CF, Gschwend PM (2009a) Using performance reference compounds in polyethylene passive samplers to deduce sediment porewater concentrations for numerous target chemicals. Environ Sci Technol 43(23):8888–8894. doi:10.1021/es901877a

    Article  CAS  Google Scholar 

  • Fernandez LA, MacFarlane JK, Tcaciuc AP, Gschwend PM (2009b) Measurement of freely dissolved PAH concentrations in sediment beds using passive sampling with low-density polyethylene strips. Environ Sci Technol 43(5):1430–1436

    Article  CAS  Google Scholar 

  • Friedman C, Burgess RM, Perron MM, Cantwell MG, Ho KT, Lohmann R (2009) Comparing polychaete bioaccumulation and passive sampler uptake to assess the effects of sediment resuspension on PCB bioavailability. Environ Sci Technol 43:2865–2870

    Article  CAS  Google Scholar 

  • Goldberg ED (1975) The mussel watch: a first step in global marine monitoring. Mar Pollut Bull 6:111–114

    Article  Google Scholar 

  • Hale SE, Martin TJ, Goss KU, Arp HPH, Werner D (2010) Partitioning of organochlorine pesticides from water to polyethylene passive samplers. Environ Pollut 158(7):2511–2517. doi:10.1016/j.envpol.2010.03.010

    Article  CAS  Google Scholar 

  • Hawker DW (2010) Modeling the response of passive samplers to varying ambient fluid concentrations of organic contaminants. Environ Toxicol Chem 29(3):591–596. doi:10.1002/etc.69

    Article  CAS  Google Scholar 

  • Hermans JH, Smedes F, Hofstraat JW, Cofino WP (1992) A method for estimation of chlorinated biphenyls in surface waters: influence of sampling method on analytical results. Environ Sci Technol 26:2028–2034

    Article  CAS  Google Scholar 

  • Huckins JN, Manuweera GK, Petty JD, Mackay D, Lebo JA (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ Sci Technol 27:2488–2496

    Article  Google Scholar 

  • Huckins JN, Petty JD, Booij K (2006) Monitors of organic chemicals in the environment - semipermeable membrane devices. Springer, New York

    Google Scholar 

  • Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36(1):85–91

    Article  CAS  Google Scholar 

  • ICES (2005) Passive sampling techniques for contaminants. Report of the advisory committee on the marine environment (ACME), section 2.3.5. http://www.ices.dk/committe/acom/comwork/report/2005/may/passive%20samplers.pdf. ICES, Copenhagen

  • ISO (2011) Water quality - sampling - part 23: Guidance on passive sampling in surface waters. International Organization for Standardization, Geneva, ISO 5667-23:2011(E)

  • ITRC (2006) Technology overview of passive sampler technologies. http://www.itrcweb.org/documents/dsp_4.pdf. Interstate Technology & Regulatory Council, Washington, D.C.

  • Jonker MTO, Koelmans AA (2001) Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35(18):3742–3748

    Article  CAS  Google Scholar 

  • Jonker MTO, Muijs B (2010) Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals. Chemosphere 80(3):223–227. doi:10.1016/j.chemosphere.2010.04.041

    Article  CAS  Google Scholar 

  • Kimbrough KL, Johnson WE, Lauenstein GG, Christensen JD, Apeti DA (2009) An assessment of polybrominated diphenyl ethers (PBDEs) in sediments and bivalves of the U.S. Coastal zone. NOAA Technical Memorandum NOS Silver Spring, MD

  • Klanova J, Diamond M, Jones K, Lammel G, Lohmann R, Pirrone N, Scheringer M, Balducci C, Bidleman T, Blaha K, Blaha L, Booij K, Bouwman H, Breivik K, Eckhardt S, Fiedler H, Garrigues P, Harner T, Holoubek I, Hung H, MacLeod M, Magulova K, Mosca S, Pistocchi A, Simonich S, Smedes F, Stephanou E, Sweetman A, Sebkova K, Venier M, Vighi M, Vrana B, Wania F, Weber R, Weiss P (2011) Identifying the research and infrastructure needs for the global assessment of hazardous chemicals ten years after establishing the Stockholm Convention. Environ Sci Technol 45(18):7617–7619. doi:10.1021/es202751f

    Article  CAS  Google Scholar 

  • Knudsen JG, Hottel HC, Sarofim AF, Wankat PC, Knaebel KS (1999) Heat and mass transfer. In: Green DW, Maloney JO (eds) Perry's chemical engineer's handbook. 7th ed. McGraw-Hill, New York, pp 5-1 to 5-79

  • Lepom P, Brown B, Hanke G, Loos R, Quevauviller P, Wollgast J (2009) Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European water framework directive. J Chromatogr A 1216:302–315

    Article  CAS  Google Scholar 

  • Leslie HA, Ter Laak TL, Busser FJM, Kraak MHS, Hermens JLM (2002) Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota? Environ Sci Technol 36:5399–5404

    Article  CAS  Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  • Li NQ, Wania F, Lei YD, Daly GL (2003) A comprehensive and critical compilation, evaluation, and selection of physical-chemical property data for selected polychlorinated biphenyls. J Phys Chem Ref Data 32(4):1545–1590

    Article  CAS  Google Scholar 

  • Lohmann R, Muir DCG (2010) Global aquatic passive sampling (AQUA-GAPS): using passive samplers to monitor POPs in the waters of the world. Environ Sci Technol 44(3):860–864

    Article  CAS  Google Scholar 

  • Lohmann R (2012) A critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46:606–618

    Google Scholar 

  • Ma YG, Lei YD, Xiao H, Wania F, Wang WH (2010) Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25°C. J Chem Eng Data 55:819–825

    Article  CAS  Google Scholar 

  • Mayer P, Tolls J, Hermens L, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37(9):184A–191A

    Article  Google Scholar 

  • Mayer P, Holmstrup M (2008) Passive dosing of soil invertebrates with polycyclic aromatic hydrocarbons: limited chemical activity explains toxicity cutoff. Environ Sci Technol 42(19):7516–7521

    Article  CAS  Google Scholar 

  • Millero FJ, Huang F (2009) The density of seawater as a function of salinity (5 to 70 g  kg-1) and temperature (273.15 to 363.15 K). Ocean Sci 5:91–100

    Article  CAS  Google Scholar 

  • Millero FJ, Sohn ML (1992) Chemical oceanography. CRC Press, Boca Raton

    Google Scholar 

  • Monirith I, Ueno D, Takahashi S, Nakata H, Sudaryanto A, Subramanian A, Karuppiah S, Ismail A, Muchtar M, Zheng J, Richardson BJ, Prudente M, Hue ND, Tana TS, Tkalin AV, Tanabe S (2003) Asia-Pacific mussel watch: monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Mar Pollut Bull 46:281–300

    Article  CAS  Google Scholar 

  • Muijs B, Jonker MTO (2009) Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons. Environ Sci Technol 43(12):4517–4523. doi:10.1021/es803462y

    Article  CAS  Google Scholar 

  • Muller JF, Manomanii K, Mortimer MR, McLachlan MS (2001) Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius J Anal Chem 371(6):816–822

    Article  CAS  Google Scholar 

  • Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2009) Development and evaluation of polyethylene reverse samplers for marine phase II whole sediment toxicity identification evaluations. Environ Toxicol Chem 28:749–758

    Article  CAS  Google Scholar 

  • Petty JD, Orazio CE, Huckins JN, Gale RW, Lebo JA, Meadows JC, Echols KR, Cranor WL (2000) Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J Chromatogr A 879:83–95

    Article  CAS  Google Scholar 

  • Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  • Rusina TP, Smedes F, Klanova J (2010a) Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polylethylene polymers. J Appl Polymer Sci 116(3):1803–1810. doi:10.1002/app.31704

    CAS  Google Scholar 

  • Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68(7):1344–1351. doi:10.1016/j.chemosphere.2007.01.025

    Article  CAS  Google Scholar 

  • Rusina TP, Smedes F, Koblizkova M, Klanova J (2010b) Calibration of silicone rubber passive samplers: experimental and modeled relations between sampling rate and compound properties. Environ Sci Technol 44(1):362–367. doi::10.1021/es900938r

    Article  CAS  Google Scholar 

  • Schenker U, MacLeod M, Scheringer M, Hungerbuhler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol 39(21):8434–8441

    Article  CAS  Google Scholar 

  • Shen L, Wania F (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J Chem Eng Data 50:742–768

    Article  CAS  Google Scholar 

  • Smedes F (2007) Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels. In: Greenwood R, Mills G, Vrana B (eds) Comprehensive analytical chemistry, vol 48. Elsevier, pp 407-448

  • Smedes F, Geertsma RW, van der Zande T, Booij K (2009) Polymer-water partition coefficients of hydrophobic compounds for passive sampling: application of cosolvent models for validation. Environ Sci Technol 43(18):7047–7054. doi:10.1021/es9009376

    Article  CAS  Google Scholar 

  • Smedes F, Van der Zande T, Davies IM (2007) ICES passive sampling trial survey for water and sediment (PSTS) 2006-2007. Part 3: preliminary interpretation of field data, http://www.ices.dk/products/cmdocs/cm-2007/j/j0407.pdf.

  • Sprunger L, Proctor A, Acree WE, Abraham MH (2007) Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model. J Chromatogr A 1175(2):162–173

    Article  CAS  Google Scholar 

  • Stephens BS, Kapernick A, Eaglesham G, Mueller J (2005) Aquatic passive sampling of herbicides on naked particle loaded membranes: accelerated measurement and empirical estimation of kinetic parameters. Environ Sci Technol 39(22):8891–8897

    Article  CAS  Google Scholar 

  • UNEP (2001) Final act of the plenipotentiaries on the Stockholm Convention on persistent organic pollutants. United Nations Environment Program Chemicals, Geneva, Switzerland

    Google Scholar 

  • Vaes WHJ, Hamwijk C, Ramos EU, Verhaar HJM, Hermens JLM (1996) Partitioning of organic chemicals to polyacrylate-coated solid phase microextraction fibers: kinetic behavior and quantitative structure–property relationships. Anal Chem 68(24):4458–4462

    Article  CAS  Google Scholar 

  • Vrana B, Mills G, Greenwood R, Knutsson J, Svensson K, Morrison G (2005) Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water. J Environ Monitor 7(6):612–620. doi:10.1039/b419070j

    Article  CAS  Google Scholar 

  • Vrana B, Mills GA, Dominiak E, Greenwood R (2006) Calibration of the Chemcatcher passive sampler for the monitoring of priority organic pollutants in water. Environ Pollut 142(2):333–343

    Article  CAS  Google Scholar 

  • Vrana B, Mills GA, Kotterman M, Leonards P, Booij K, Greenwood R (2007) Modelling and field application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic organic pollutants in water. Environ Pollut 145(3):895–904. doi:10.1016/j.envpol.2006.04.030

    Article  CAS  Google Scholar 

  • Vrana B, Popp P, Paschke A, Schuurmann G (2001) Membrane-enclosed sorptive coating an integrative passive sampler for monitoring organic contaminants in water. Anal Chem 73(21):5191–5200. doi:10.1021/ac010630z

    Article  CAS  Google Scholar 

  • Vrana B, Vermeirssen ELM, Allan IJ, Kohoutek J, Kennedy K, Mills GA, Greenwood R (2010) Passive sampling of environmental pollutants in the aquatic environment: State of the art and perspectives. Position paper. www.norman-network.net/public_docs/slides_prague/norman_position_paper_pas_sampling.pdf.

  • Xiao H, Li NQ, Wania F (2004) Compilation, evaluation, and selection of physical-chemical property data for alpha-, beta-, and gamma-hexachlorocyclohexane. J Chem Eng Data 49:173–185

    Article  CAS  Google Scholar 

  • Xie WH, Shiu WY, Mackay D (1997) A review of the effect of salts on the solubility of organic compounds in seawater. Mar Environ Res 44:429–444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.L. acknowledges funding from EPA’s Great Lakes Restoration Initiative Award GLAS # 00E00597-0 supporting passive sampler research at URI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Lohmann.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, R., Booij, K., Smedes, F. et al. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environ Sci Pollut Res 19, 1885–1895 (2012). https://doi.org/10.1007/s11356-012-0748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0748-9

Keywords