Skip to main content

Advertisement

Log in

In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz–Donawitz slag

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction.

Method

P-spiked Linz–Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg−1 soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans.

Results

Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate.

Conclusions

P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCA:

Chromated copper arsenate

DW:

Dry weight

EC:

Electrical conductivity

FW:

Fresh weight

OM:

Organic matter

GF-AAS:

Graphite furnace atomic absorption spectrometry

LD slag:

P-spiked Linz–Donawitz slag

PTTE:

Potentially toxic trace elements

TBS:

Thomas phosphate basic slag

X-EDS:

X-ray energy dispersive spectroscopy

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assistednatural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Ali MT, Shahram SH (2007) Converter slag as a liming agent in the amelioration of acidic soils. Int J Agric Biol 9:715–720

    CAS  Google Scholar 

  • Alva AK, Sumner ME (1990) Amelioration of acid soil infertility by phosphogypsum. Plant Soil 128:127–129

    Article  CAS  Google Scholar 

  • Amin F (1993) Etude de la fixation du phosphore sur des matériaux naturels et artificiels. Thèse University of Poitiers, France

    Google Scholar 

  • Baize D (1997) Un point sur les teneurs totales des éléments traces métalliques dans les sols. INRA Editions, Paris

    Google Scholar 

  • Barbosa Filho MP, Zimmermann FJP, Da Silva OF (2004) Influence of calcium silicate slag on soil acidity and upland rice grain yield. Ciênc Agrotec 28:323–331

    Article  Google Scholar 

  • Barrow NJ (1987) The effects of phosphate on zinc sorption by a soil. J Soil Sci 38:453–459

    Article  CAS  Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138

    Article  CAS  Google Scholar 

  • Bes C, Mench M, Aulen M, Gasté H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330:267–280

    Article  CAS  Google Scholar 

  • Besga G, Pinto M, Rodriguez M (1996) Agronomic and nutritional effects of Linz-Donawitz slag application to two pastures in Northern Spain. Nutr Cycl Agroecosys 46:157–167

    Article  Google Scholar 

  • Bhattacharya P, Mukherjee AB, Jacks G, Nordqvist S (2002) Metal contamination at a wood preservation site: characterisation and experimental studies on remediation. Sci Total Environ 290:168–180

    Article  Google Scholar 

  • Boisson J, Ruttens A, Mench M, Vangronsveld J (1999a) Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Environ Pollut 104:225–233

    Article  CAS  Google Scholar 

  • Boisson J, Ruttens A, Mench M, Vangronsveld J (1999b) Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Soil Sci Plant Anal 30:365–387

    Article  CAS  Google Scholar 

  • Bolan NS, Duraisamy VP (2003) Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust J Soil Res 41:533–555

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44

    Article  CAS  Google Scholar 

  • Brallier S, Harrison RB, Henry CL, Dongsen X (1996) Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Poll 86:195–206

    Article  CAS  Google Scholar 

  • Brown S, Chaney R, Angle JS (1997) Subsurface liming and metal movement in soils amended with lime-stabilized biosolids. J Environ Qual 26:724–732

    Article  CAS  Google Scholar 

  • Brown TT, Koenig RT, Huggins DR, Harsh JB, Rossi RE (2008) Lime effects on soil acidity, crop yield and aluminum chemistry in inland Pacific Northwest direct-seed cropping systems. Soil Sci Soc Am J 72:34–640

    Article  Google Scholar 

  • Carvalho-Pupatto JG, Bull LT, Crusciol CAC (2004) Soil chemical attributes, root growth and rice yield according to slag application. Pesqui Agropecu Bras 39:1213–1218

    Article  Google Scholar 

  • Ciesielski H, Sterckeman T (1997) Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie 17:1–7

    Article  Google Scholar 

  • Ciesielski H, Proix N, Sterckeman T (1997) Détermination des incertitudes liées à une méthode de mise en solution des sols et des sédiments par étude interlaboratoire. Analusis 25(6):188–192

    CAS  Google Scholar 

  • Cuin TA (2006) Calcium and oxidative stress. In: advances in plant physiology, Hemantaranjan (Ed), scientific editor. Jodhpur 9:41–66

    CAS  Google Scholar 

  • Dimitrova S (1996) Metal sorption on blast furnace slag. Water Res 30(1):228–232

    Article  CAS  Google Scholar 

  • Dimitrova S, Mehandjiev D (1998) Lead removal from aqueous solutions by granulated blast-furnace slag. Water Res 32:3289–3292

    Article  CAS  Google Scholar 

  • Fendorf E (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  CAS  Google Scholar 

  • Fessenden RJ, Sutherland BJ (1979) The effect of excess soil copper on the growth of black spruce and green alder seedlings. Bot Gaz 140:582–587

    Article  Google Scholar 

  • Freeman MH, McIntyre CR (2008) A comprehensive review of copper-based wood preservatives—with a focus on new micronized or dispersed copper systems. For Prod J 58(11):6–27

    CAS  Google Scholar 

  • Gabrielli dos Santos GC, Rodella AA, Aparecida de Abreu C, Coscione AR (2010) Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Sci Agric 67:713–719

    Google Scholar 

  • Gahan CS, Cunha ML, Sandström Å (2009) Comparative study on different steel slags as neutralising agent in bioleaching. Hydrometallurgy 95:190–197

    Article  CAS  Google Scholar 

  • Gardener's Network (2009) pH levels in garden soils, pH levels for vegetables. http://www.gardenersnet.com/atoz/phlevel1.htm. Accessed 15 May 2011

  • Girouard E, Zagury GJ (2009) Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction. Sci Total Environ 407:2576–2585

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jackson ML (1969) Soil Chemical Analysis- advanced course 2nd edition. Departement of Soil Sciences, University of Wisconsin, Madison, USA

  • Jamali KSF, Forghani A (2008) Using by-products of steelmaking industry as amendments to correct soil pH, and their effects on some heavy element in soil and tea leaves. Agricultural Science (Tabriz) 18(3):84–99

    Google Scholar 

  • Karjalainen A, Kilpi-Koski J, Vaisanen A, Penttinen S, Gestel C, Penttinen O (2009) Ecological risks of an old wood impregnation mill: application of the triad approach. Integr Environ Assess Manag 5:379–389

    Article  CAS  Google Scholar 

  • Kim DH, Shin MC, Choi HD, Seo CI, Baek K (2008) Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination 223:283–289

    Article  CAS  Google Scholar 

  • Kolbas A, Mench M, Herzig R, Nehnevajova E, Bes CM (2011) Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Int J Phytoremediat. doi:10.1080/15226514.2011.568536

  • Krebs R, Gupta SK, Furrer G, Schulin R (1998) Solubility and plant uptake of metals with and without liming of sludge-amended soils. J Environ Qual 27:18–23

    Article  CAS  Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Laboratoire d'analyses des sols d'Arras, INRA (2007) Méthodes employées au laboratoire.. http://www.lille.inra.fr/las/methodes_d_analyse/sols. Accessed 15 May 2011

  • Liu R, Zhao D (2007) In situ immobilization of Cu (II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876

    Article  CAS  Google Scholar 

  • Ma Q (1996) Factors influencing the effectiveness and stability of aqueous lead immobilization by hydroxyapatite. J Environ Qual 25:1420–1429

    Article  CAS  Google Scholar 

  • MacNicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mathieu A, Baize D, Raoul C, Daniau C (2008) Proposition de référentiels régionaux en éléments traces métalliques dans les sols: leur utilisation dans les évaluations des risques sanitaires. Environ Risques Santé 7(2):112–122

    Google Scholar 

  • Mench M, Bes C (2009) Assessment of the ecotoxicity of topsoils from a wood treatment site. Pedosphere 19:143–155

    Article  CAS  Google Scholar 

  • Mench M, Didier V, Löffler M, Gomez A, Masson P (1994a) A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Didier V, Clijsters H (1994b) Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil. Environ Pollut 86:279–286

    Article  CAS  Google Scholar 

  • Mench M, Coussin F, Mocquot B, Bussière S, Prunet T, Lagriffoul A (1996) Evaluation des apports d'un biotest végétal et de la spéciation des éléments traces à la mise au point d'une batterie de tests d'écotoxicologie terrestre applicables aux sols et aux déchets. Final report no. 4930029, INRA, Unité d'Agronomie, Bordeaux—ADEME, Recherche, Milieux et Impact, Paris, France

  • Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physico-chemical aspects and efficiency of trace element immobilisation by soil amendments. In: Vangronsveld J, Cunningham SD (eds) In situ inactivation and phytorestoration of metal-contaminated soils. Landes Biosciences, Georgetown

    Google Scholar 

  • Mench M, Manceau A, Vangronsveld J, Clijsters H, Mocquot (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 20:383–397

    Article  Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W (2006) Phytostabilisation of metal-contaminated sites. Phytoremediation of metal-contaminated soils. In: Echevarria G, Morel JL, Goncharova N (eds) NATO science series: IV: earth and environmental sciences 68. Springer, Dordrecht, Netherlands

    Google Scholar 

  • Mench M, Bert V, Schwitzguébel JP, Lepp N, Schröder P, Gawronski S, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  Google Scholar 

  • Omafra B (2008) The gardener's handbook. Chapter 4 the nature of soil. Look to the ground. http://www.omafra.gov.on.ca/english/crops/gardbk/4soil.htm#table7. Accessed 15 May 2011

  • Oste L, Lexmond TM, Riemsdijk WH (2002) Metal immobilization in soils using synthetic zeolites. J Environ Qual 31:813–821

    Article  CAS  Google Scholar 

  • Pérez de Mora A, Ortega-Calvo JJ, Cabrera E, Madejón E (2005) Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Appl Soil Ecol 28:125–137

    Article  Google Scholar 

  • Pierzynski GM, Schwab AP (1993) Bioavailability of zinc, cadmium, and lead in a metal-contaminated alluvial soil. J Environ Qual 22:247–254

    Article  CAS  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Current Opinion Plant Biol 9:256–263

    Article  CAS  Google Scholar 

  • Pinto M, Rodriguez M, Besga GKK, Lopez FA (1995) Effects of Linz-Donawitz (LD) slag on soil properties and pasture production in the Basque country (Northern Spain). N Z J Agr Res 38:143–155

    Article  Google Scholar 

  • Proctor DM, Shay EC, Fehling KA, Finley BL (2002) Assessment of human health and ecological risks posed by the uses of steel-industry slags in the environment. Human Ecol Risk Assess 8:681–711

    Article  Google Scholar 

  • Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazardous Mat 117:41–53

    Article  CAS  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soil. United States Department of Agriculture, Handbook 60

  • Sinaj S, Frossard E, Fardeau JC, Lhote F, Morel JL (1994) Observation directe de l'altération de scories de déphosphoration après incorporation dans un sol acide cultivé. Cr Acad Sci II A 319:1207–1214

    CAS  Google Scholar 

  • Singh BR, Oste L (2001) In situ immobilization of metals in contaminated or naturally metal-rich soils. Environ Rev 9:81–97

    Article  CAS  Google Scholar 

  • Sipos P, Nemeth T, Kis VK, Mohai I (2008) Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73:461–469

    Article  CAS  Google Scholar 

  • Su C, Evans LJ (1996) Soil solution chemistry and alfalfa response to CaCO3 and MgCO3 on an acidic Gleysol. Can J Soil Sci 76:41–46

    Article  CAS  Google Scholar 

  • Tlustoš P, Száková J, Kořínek K, Pavlíková D, Hanč A, Balík J (2006) The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ 52(1):16–24

    Google Scholar 

  • Tyler LD, McBride MB (1982) Mobility and extractability of cadmium, copper, nickel and zinc in organic and mineral soil columns. Soil Sci 134:198–205

    Article  CAS  Google Scholar 

  • Wang YM, Chen TC, Yeh KJ, Shue MF (2001) Stabilization of an elevated heavy metal contaminated site. J Hazard Mater 88:63–74

    Article  CAS  Google Scholar 

  • Wright KE (1937) Effects of phosphorus and lime in reducing aluminum toxicity of acid soils. Plant Physiol 12:173–181

    Article  CAS  Google Scholar 

  • Xu Y, Schwartz FW, Traina SJ (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sc Tech 28:1472–1480

    Article  CAS  Google Scholar 

  • Yilmaz D, Lassabatere L, Angulo-Jaramillo R, Deneele D, Legret M (2010) Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J 9:107–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Le Coustumer.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negim, O., Mench, M., Bes, C. et al. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz–Donawitz slag. Environ Sci Pollut Res 19, 847–857 (2012). https://doi.org/10.1007/s11356-011-0622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0622-1

Keywords

Navigation