Skip to main content
Log in

Genotoxicity associated with oxidative damage in the liver and kidney of mice exposed to dimethoate subchronic intoxication

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background and aims

Because of the widespread use of pesticides for domestic and industrial applications, the evaluation of their toxic effects is of major concern to public health. The aim of the present study was to investigate the propensity of dimethoate (DM), an organophosphorus pesticide, to cause oxidative damage in the liver and kidney of mice and its associated genotoxic effect.

Methods

DM was administered intraperitoneally at doses of 1, 5, 10, 15, and 30 mg/kg body weight for 30 consecutive days in BALB/c mice. Oxidative stress was monitored in the kidney and liver by measuring malondialdehyde level, protein carbonyl concentration, and the catalase activity. The genotoxicity of DM was assessed by the comet assay in vivo.

Results and discussion

Our results indicated that DM inhibited acetylcholinesterase activities in the liver and kidney of treated mice. DM increased lipid peroxidation and protein carbonyl levels in the liver and kidney in a dose-dependent manner. Catalase activity was found to be significantly increased in the liver and kidney at doses higher than 5 mg/kg body weight.

Conclusions

Our study demonstrated that DM induced DNA damage in the liver and kidney of treated mice in a dose-dependent manner; this induction was associated to DM-induced oxidative stress. Further investigations are needed to prove the implication of oxidative stress in genotoxicity induced by DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004a) Pesticides and oxidative stress: a review. Med Sci Monit 106:141–147

    Google Scholar 

  • Abdollahi M, Donyavi M, Pournourmohammadi S, Saadat M (2004b) Hyperglycemia associated with increased hepatic glycogen phosphorylase and phosphenol pyruvate carboxykinase in rats following sub-chronic exposure to malathion. Comp Biochem Physiol C Toxicol Appl Pharmacol 137:343–347

    Article  Google Scholar 

  • Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O (2003) Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for sub chronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol 22:205–211

    Article  CAS  Google Scholar 

  • Alavanja MC (2009) Introduction: pesticides use and exposure extensive worldwide. Rev Environ Health 24(4):303–309

    Article  CAS  Google Scholar 

  • Aprea C, Sciarra G, Sartorelli P (1998) Environmental and biological monitoring of exposure to mancozeb, ethylenethiourea, and dimethoate during industrial formulation. J Toxicol Environ Health 53:263–281

    Article  CAS  Google Scholar 

  • Aprea C, Terenzoni B, De Angelis V, Sciarra G, Lunghini L, Borzacchi G, Vasconi D, Fani D, Quercia A, Salvan A, Settimi L (2004) Evaluation of skin and respiratory doses and urinary excretion of alkylphosphates inworkers exposed to dimethoate during treatment of olive trees. Arch Environ Contam Toxicol 48:127–134

    Article  Google Scholar 

  • Astiz M, de Alaniz MJ, Marra CA (2009a) Effect of pesticides on cell survival in liver and brain rat tissues. Ecotoxicol Environ Saf 72(7):2025–2032

    Article  CAS  Google Scholar 

  • Astiz M, Hurtado de Catalfo GE, de Alaniz MJ, Marra CA (2009b) Involvement of lipids in dimethoate-induced inhibition of testosterone biosynthesis in rat interstitial cells. Lipids 44(8):703–718

    Article  CAS  Google Scholar 

  • Aust SD (1989) Metal ions, oxygen radicals and tissue damage. Bibl Nutr Dieta 43:266–277

    Google Scholar 

  • Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of pesticides on lipid peroxidation and free radical scavengers. Toxicol Lett 107:33–47

    Article  CAS  Google Scholar 

  • Basu AK, Marnett LJ (1983) Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis 4:331–333

    Article  CAS  Google Scholar 

  • Bianchi L, Zannoli A, Pizzala R, Stivala RA, Chiesara E (1994) Genotoxicity assay of five pesticides and their mixtures in Saccharomyces cerevisia D7. Mutat Res 321:203–211

    Article  CAS  Google Scholar 

  • Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531(1–2):37–80

    CAS  Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543:251–272

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cadet J, Douki T, Gasparutto D, Ravanat JL (2003a) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23

    Article  CAS  Google Scholar 

  • Cadet J, Douki T, Ravanat JL (2003b) The human genome as a target of oxidative modifications: damage to nucleic acids. In: Fuchs J, Podda M, Packer F (eds) Redox genome interactions and disease, chapter 8. Marcel Dekker, New York, pp 143–189

    Google Scholar 

  • Clairbone A (1985) Catalase activity. Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  • Collins A, Harrington V (2002) Repair of oxidative DNA damage: assessing its contribution to cancer prevention. Mutagenesis 17(6):489–493

    Article  CAS  Google Scholar 

  • Collins AR, Dusinska M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104(Supp 4):465–469

    CAS  Google Scholar 

  • Debnath D, Mandal TK (2000) Study of quinalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 E.C.)-induced damage of the testicular tissues and antioxidant defense systems in Sprague–Dawley albino rats. J Appl Toxicol 20:197–204

    Article  CAS  Google Scholar 

  • Dedek W, Grahl R, Schmidt R (1984) A comparative study of guanine N7-alkylation in mice in vivo by the organophosphorus insecticides trichlorphon, dimethoate, phosmet and bromophos. Acta Pharmacol Toxicol 55:104–109

    Article  CAS  Google Scholar 

  • Eckl PM, Ortner A, Esterbauer H (1993) Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes. Mutat Res 290(2):183–192

    Article  CAS  Google Scholar 

  • Ellingham TJ, Christensen EA, Maddock MB (1986) In vitro induction of sister chromatid exchanges and chromosomal aberrations in peripheral lymphocytes of the oyster toadfish and American eel. Environ Mutagen 8:555–569

    Article  CAS  Google Scholar 

  • Ellman GL, Courney KD, Andres V, Featherstone RM (1961) Anewand rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–95

    Article  CAS  Google Scholar 

  • Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16:99–109

    Article  CAS  Google Scholar 

  • EPA (1999) Memorandum, updated, revised dimethoate. The updated, revised HED chapter of the re-registration, eligibility decision document (RED). PC code: 035001, case no. 0088. Epa J, Washington, DC

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779–786

    Google Scholar 

  • Fahrig R (1974) Comparative mutagenicity studies with pesticides. IARC Sci Publ 10:161–181

    CAS  Google Scholar 

  • Farag AT, El-Aswad AF, Shaaban NA (2007) Assessment of reproductive toxicity of orally administered technical dimethoate in male mice. Reprod Toxicol 23(2):232–238

    Article  CAS  Google Scholar 

  • Gillot-Delhalle J, Coluzzi A, Moutschen J, Moutschen-Dahmen M (1983) Mutagenicity of some organophosphorus compounds at the ade-6 locus of Scizosaccharomyces pombe. Mutat Res 117:139–148

    Article  Google Scholar 

  • Gomes J, Dawodu AH, Lloyd O, Revitt DM, Anilal SV (1999) Hepatic injury and disturbed amino acid metabolism in mice following prolonged exposure to organophosphorus pesticides. Hum Exp Toxicol 18:33–37

    Article  CAS  Google Scholar 

  • Hagar HH, Fahmy AH (2002) A biochemical, histochemical, and ultrastructural evaluation of the effect of dimethoate intoxication on rat pancreas. Toxicol Lett 133:161–170

    Article  CAS  Google Scholar 

  • Haworth S, Lawlor T, Mortelmans K, Speck W, Zeiger E (1983) Salmonella mutagenesis test results for 250 chemicals. Environ Mutagen 5:3–142

    Article  CAS  Google Scholar 

  • Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W (1996) A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 2:613–619

    Article  CAS  Google Scholar 

  • IARC (1983) Miscellaneous pesticides. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol 30. IARC, Lyon

  • IARC (1991) Occupational exposures in insecticide application and some pesticides. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol 53. IARC, Lyon

  • Institóris L, Siroki O, Dési I (1995) Immunotoxicity study of repeated small doses of dimethoate and methylparathion administered to rats over three generations. Hum Exp Toxicol 14(11):879–883

    Article  Google Scholar 

  • Institóris L, Siroki O, Dési I, Undeger U (1999) Immunotoxicological examination of repeated dose combined exposure by dimethoate and two heavy metals in rats. Hum Exp Toxicol 18(2):88–94

    Article  Google Scholar 

  • IPCS/WHO (2001) Classification of pesticides by hazard and guidelines to classification. Geneva, Switzerland

  • Kamath V, Rajini PS (2007) Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology 231:137–146

    Article  CAS  Google Scholar 

  • Kamath V, Joshi AKR, Rajini PS (2008) Dimethoate induced biochemical perturbations in rat pancreas and its attenuation by cashew nut skin extract. Pestic Biochem Phys 90:58–62

    Article  CAS  Google Scholar 

  • Kasai H, Kumeno K, Yamaizumi Z, Nishimura S, Nagao M, Fujita Y (1982) Mutagenicity of methylglyoxal in coffee. Gann 73:681–683

    CAS  Google Scholar 

  • Konradsen F (2007) Acute pesticide poisoning—a global public health problem. Dan Med Bull 54(1):58–59

    Google Scholar 

  • Ladhar SS, Grover IS, Radhawa SK (1990) Mutagenicity of systemic organophosphate pesticides metasystox and rogor. Ind J Exp Biol 28:390–391

    CAS  Google Scholar 

  • Lopes S, Jurisicova A, Sun JG, Casper RF (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 13:896–900

    Article  CAS  Google Scholar 

  • Mahadevaswami MP, Kaliwal BB (2002) Effect of dimethoate administration schedules on compensatory ovarian hypertrophy, follicular dynamics, and estrous cycle in hemicastrated mice. J Basic Clin Physiol Pharmacol 13(3):225–248

    Article  CAS  Google Scholar 

  • Mahadevaswami MP, Kaliwal BB (2004) Evaluation of dimethoate toxicity on pregnancy in albino mice. J Basic Clin Physiol Pharmacol 15(3–4):211–221

    Article  CAS  Google Scholar 

  • Mahjoubi-Samet A, Fetoui H, Zeghal N (2008) Nephrotoxicity induced by dimethoate in adult rats and their suckling pups. Pestic Biochem Physiol 91:96–103

    Article  CAS  Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  Google Scholar 

  • Marnett LJ, Hurd HK, Hollstein MC, Levin DE, Esterbauer H, Ames BN (1985) Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 148:25–34

    Article  CAS  Google Scholar 

  • Mehl A, Rolseth V, Gordon S, Bjoraas M, Seeberg E, Fonnum F (2000) Brain hypoplasia caused by exposure to trichlorfon and dichlorvos during development can be ascribed to DNA alkylation damage and inhibition of DNA alkyltransferase repair. Neurotoxicology 21:165–173

    CAS  Google Scholar 

  • Mercier Y, Gatellier P, Renerre M (2004) Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Sci 66:467–473

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mohn G (1973) 5-Methyl tryptophan resisttance mutations in Escherichia coli K-12. Mutagenic activity of monofunctional alkylating agents including organophosphorus insecticides. Mutat Res 20:7–15

    Article  CAS  Google Scholar 

  • Moriya M, Ohta T, Watanabe K, Miyazawa T, Kato K, Shirasu Y (1983) Further mutagenicity studies on pesticides in bacterial reversion assay system. Mutat Res 113:173–180

    Google Scholar 

  • Mukai FH, Goldstein BD (1976) Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science 191:868–869

    Article  CAS  Google Scholar 

  • Nackerdien Z, Rao G, Cacciuttolo MA, Gajewski E, Dizdaroglu M (1991) Chemical nature of DNA–protein cross-links produced in mammalian chromatin by hydrogen peroxide in the presence of iron or copper ions. Biochemistry 30:4873–4879

    Article  CAS  Google Scholar 

  • Nehéz M, Dési I (1996) The effect of dimethoate on bone marrow cell chromosomes of rats in subchronic four-generation experiments. Ecotoxicol Environ Saf 33(2):103–109

    Article  Google Scholar 

  • Picada JN, Flores DG, Zettler CG, Marroni NP, Roesler R, Henriques JA (2003) DNA damage in brain cells of mice treated with an oxidized form of apomorphine. Mol Brain Res 114(1):80–85

    Article  CAS  Google Scholar 

  • Piña-Guzmán B, Solis-Heredia MJ, Quintanilla-Vega B (2005) Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicol Appl Pharmacol 202:189–198

    Article  Google Scholar 

  • Ranjbar A, Pasalar P, Abdollahi M (2002) Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol 21:179–182

    Article  CAS  Google Scholar 

  • Reuber MD (1984) Carcinogenicity of dimethoate. Environ Res 34:193

    Article  CAS  Google Scholar 

  • Saafi EB, Louedia M, Elfeki A, Zakhama A, Najjar MF, Hammami M, Achour L (2010) Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp Toxicol Pathol 63:433–441

    Article  Google Scholar 

  • Sanderson DM, Edson EF (1964) Toxicological properties of the organophosphorus insecticide dimethoate. Brit J Industry Med 21:52

    CAS  Google Scholar 

  • Sarkar SN, Hazarika A, Hajare S, Kataria M, Malik JK (2003) Influence of malathion pre-treatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology 185:1–8

    Article  Google Scholar 

  • Sayim F (2007) Dimethoate-induced biochemical and histopathological changes in the liver of rats. Exp Toxicol Pathol 59(3–4):237–243

    Article  CAS  Google Scholar 

  • Sharma Y, Bashir S, Irshad M, Gupta SD, Dogra TD (2005a) Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology 206:49–57

    Article  CAS  Google Scholar 

  • Sharma Y, Bashir S, Irshad M, Nagc TC, Dogra TD (2005b) Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure. Toxicology 215:173–181

    Article  CAS  Google Scholar 

  • Sivapiriya V, Jayanthisakthisekaran J, Venkatraman S (2006) Effects of dimethoate (O,O,-dimethyl S-methyl carbamoyl methyl phosphorodithioate) and ethanol in antioxidant status of liver and kidney of experimental mice. Pest Biochem Physiol 85:115–121

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  Google Scholar 

  • Twigg JP, Irvine DS, Aitken RJ (1998) Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod 13:1864–1871

    Article  CAS  Google Scholar 

  • Undeger U, Institoris L, Siroki O, Nehez M, Desi I (2000) Simultaneous geno- and immunotoxicological investigations for early detection of organophosphate toxicity in rats. Ecotoxicol Environ Saf 45:43–48

    Article  CAS  Google Scholar 

  • Yonei S, Furui H (1981) Lethal and mutagenic effects of malondialdehyde, a decomposition product of peroxidized lipids, on Escherichia coli with different DNA-repair capacities. Mutat Res 88:23–32

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the “Ministère Tunisien de l’Enseignement Supérieur et de la Recherche Scientifique et de la Technologie (Laboratoire de Recherche sur les Substances Biologiquement Compatibles: LRSBC)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen Bacha.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayed-Boussema, I., Rjiba, K., Moussa, A. et al. Genotoxicity associated with oxidative damage in the liver and kidney of mice exposed to dimethoate subchronic intoxication. Environ Sci Pollut Res 19, 458–466 (2012). https://doi.org/10.1007/s11356-011-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0588-z

Keywords

Navigation