Skip to main content

Advertisement

Log in

The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

The present study was part of a comprehensive weight-of-evidence approach with the goal of identifying potential causes for the declines in fish populations, which have been observed during the past decades in the Upper Danube River.

Methods

The specific goal was the investigation of the endocrine disrupting potential of sediment extracts from different sites along the Danube River. Parallel to the identification and quantification of target estrogens, two in vitro bioassays were employed to assess the estrogenic potential (yeast estrogen screen, YES) of the sediment samples and to evaluate their effects on the production of testosterone (T) and E2 (H295R Steroidogenesis Assay). Using a potency balance approach, the contribution of the measured compounds (Chem-EEQs) to the total endocrine activity measured by the YES (YES-EEQs) was calculated.

Results and discussion

Of the nine sediment extracts tested five extracts exhibited significant estrogenic activities in the YES, which suggested the presence of ER agonists in these samples. The xenoestrogens nonylphenol (NP) and bisphenol A (BPA) and the natural estrogen estrone (E1) were detected while concentrations of 17β-estradiol (E2) and ethinylestradiol (EE2) were less than their respective limits of quantification in all sediment extracts. A comparison of the measured YES-EEQs and the calculated Chem-EEQs revealed that as much as 6% of estrogenic activity in extracts of most sediments could be explained by two xeno- and one natural estrogen. Exposure of H295R cells to sediment extracts from four different locations in the Danube River resulted in significantly increased concentrations of E2, but only slight inhibition of T synthesis. Furthermore, application of the H295R Steroidogenesis Assay provided evidence for endocrine disrupting potencies in sediment samples from the Upper Danube River, some of which were not detectable with the YES. In conclusion, differential endocrine activities were associated with several sediments from the Upper Danube River. Further investigations will have to show whether the observed activities are of biological relevance with regard to declines in fish populations in the Upper Danube River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbuhler A, Marazuela MD, Peter A, Schonenberger R, Vogeli AC, Suter MJ, Eggen RI (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378:688–696

    CAS  Google Scholar 

  • Ankley G, Mihaich E, Stahl R, Tillitt D, Colborn T, McMaster S, Miller R, Bantle J, Campbell P, Denslow N, Dickerson R, Folmar L, Fry M, Giesy J, Gray LE, Guiney P, Hutschinson T, Kennedy S, Kramer V, LeBlanc G, Mayes M, Nimrod A, Patino R, Peterson R, Purdy R, Ringer R, Thomas P, Touart L, Van der Kraak G, Zacharewski T (1998) Overview of a workshop on screening methods for detecting potential (anti-)estrogenic/androgenic chemicals in wildlife. Environ Toxicol Chem 17:68–87

    CAS  Google Scholar 

  • Beck IC, Bruhn R, Gandrass J (2006) Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63:1870–1878

    CAS  Google Scholar 

  • Bennie DT (1999) Review of the environmental occurrence of alkylphenols and alkylphenol ethoxylates. Water Qual Res J Can 34:79–122

    CAS  Google Scholar 

  • Blaha L, Hilscherova K, Mazurova E, Hecker M, Jones PD, Newsted JL, Bradley PW, Gracia T, Duris Z, Horka I, Holoubek I, Giesy JP (2006) Alteration of steroidogenesis in H295R cells by organic sediment contaminants and relationships to other endocrine disrupting effects. Environ Int 32:749–757

    CAS  Google Scholar 

  • Brack W, Erdinger L, Schirmer K, Hollert H (2005) Identification of mutagenicity and EROD-inducing potency in aquatic sediments. Environ Toxicol Chem 24:2445–2458

    CAS  Google Scholar 

  • Brack W, Klamer HJ, Lopez de Alda M, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins a review. Environ Sci Pollut Res Int 14:30–38

    CAS  Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8

    Google Scholar 

  • Clemons JH, Allan LM, Marvin CH, Wu Z, McCarry BE, Bryant DW, Zacharewski TR (1998) Evidence of estrogen- and TCDD-like activities in crude and fractionated extracts of PM10 air particulate material using in vitro gene expression assays. Environ Sci Technol 32:1853–1860

    CAS  Google Scholar 

  • Filby AL, Neuparth T, Thorpe KL, Owen R, Galloway TS, Tyler CR (2007) Health impacts of estrogens in the environment, considering complex mixture effects. Environ Health Perspect 115:1704–1710

    CAS  Google Scholar 

  • Garcia-Reyero N, Pina B, Grimalt JO (2005) Estrogenic activity in sediments from european mountain lakes. Environ Sci Technol 39:1427–1436

    CAS  Google Scholar 

  • Gercken J, Sordyl H (2002) Intersex in feral marine and freshwater fish from northeastern Germany. Mar Environ Res 54:651–655

    CAS  Google Scholar 

  • Giesy JP, Hilscherova K, Jones PD, Kannan K, Machala M (2002) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Pollut Bull 45:3–16

    CAS  Google Scholar 

  • Gomes RL, Avcioglu E, Scrimshaw MD, Lester JN (2004) Steroid-estrogen determination in sediment and sewage sludge: a critique of sample preparation and chromatographic/mass spectrometry considerations, incorporating a case study in method development. Trends Anal Chem 23:737–744

    CAS  Google Scholar 

  • Gracia T, Hilscherova K, Jones PD, Newsted JL, Zhang X, Hecker M, Higley EB, Sanderson JT, Yu RM, Wu RS, Giesy JP (2006) The H295R system for evaluation of endocrine-disrupting effects. Ecotoxicol Environ Saf 65:293–305

    CAS  Google Scholar 

  • Gracia T, Hilscherova K, Jones PD, Newsted JL, Higley EB, Zhang X, Hecker M, Murphy MB, Yu RM, Lam PK, Wu RS, Giesy JP (2007) Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds. Toxicol Appl Pharmacol 225:142–153

    CAS  Google Scholar 

  • Gracia T, Jones PD, Higley EB, Hilscherova K, Newsted JL, Murphy MB, Chan AK, Zhang X, Hecker M, Lam PK, Wu RS, Giesy JP (2008) Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. Environ Sci Pollut Res Int 15:332–343

    Google Scholar 

  • Gross-Sorokin MY, Roast SD, Brighty GC (2006) Assessment of feminization of male fish in English rivers by the Environment Agency of England and Wales. Environ Health Perspect 114(Suppl 1):147–151

    Google Scholar 

  • Grund S, Keiter S, Böttcher M, Seitz N, Wurm K, Manz W, Hollert H, Braunbeck T (2010) Assessment of fish health status in the Upper Danube River by investigation of ultrastructural alterations in the liver of barbel Barbus barbus. Dis Aquat Org 88:235–248

    Google Scholar 

  • He Y, Murphy MB, Yu RM, Lam MH, Hecker M, Giesy JP, Wu RS, Lam PK (2008) Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line. Toxicol Lett 176:230–238

    CAS  Google Scholar 

  • Hecker M, Giesy JP (2008) Novel trends in endocrine disruptor testing: the H295R Steroidogenesis Assay for identification of inducers and inhibitors of hormone production. Anal Bioanal Chem 390:287–291

    CAS  Google Scholar 

  • Hecker M, Tyler CR, Hoffmann M, Maddix S, Karbe L (2002) Plasma biomarkers in fish provide evidence for endocrine modulation in the Elbe River, Germany. Environ Sci Technol 36:2311–2321

    CAS  Google Scholar 

  • Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol 217:114–124

    CAS  Google Scholar 

  • Hecker M, Hollert H, Cooper R, Vinggaard AM, Akahori Y, Murphy M, Nellemann C, Higley E, Newsted J, Wu R, Lam P, Laskey J, Buckalew A, Grund S, Nakai M, Timm G, Giesy J (2007) The OECD validation program of the H295R steroidogenesis assay for the identification of In vitro inhibitors and inducers of testosterone and estradiol production. Phase 2: Inter-laboratory pre-validation studies. Env Sci Pollut Res 14:23–30

    CAS  Google Scholar 

  • Heemken OP, Reincke H, Stachel B, Theobald N (2001) The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 45:245–259

    CAS  Google Scholar 

  • Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut Res Int 7:159–171

    CAS  Google Scholar 

  • Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, Yu RM, Wu RS, Giesy JP (2004) Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol Sci 81:78–89

    CAS  Google Scholar 

  • Hirobe M, Goda Y, Okayasu Y, Tomita J, Takigami H, Ike M, Tanaka H (2006) The use of enzyme-linked immunosorbent assay (ELISA) for the determination of pollutants in environmental and industrial wastes. Water Sci Technol 54:1–9

    CAS  Google Scholar 

  • Hollert H, Durr M, Holtey-Weber R, Islinger M, Brack W, Farber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout. Environ Sci Pollut Res Int 12:347–360

    CAS  Google Scholar 

  • Holthaus KI, Johnson AC, Jurgens MD, Williams RJ, Smith JJ, Carter JE (2002) The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers. Environ Toxicol Chem 21:2526–2535

    CAS  Google Scholar 

  • Houtman CJ, Booij P, Jover E, Pascual del Rio D, Swart K, van Velzen M, Vreuls R, Legler J, Brouwer A, Lamoree MH (2006) Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere 65:2244–2252

    CAS  Google Scholar 

  • Ingrand V, Herry G, Beausse J, de Roubin MR (2003) Analysis of steroid hormones in effluents of wastewater treatment plants by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1020:99–104

    CAS  Google Scholar 

  • Islinger M, Pawlowski S, Hollert H, Volkl A, Braunbeck T (1999) Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive dot blot/RNAse protection-assay. Sci Total Environ 233:109–122

    CAS  Google Scholar 

  • Jobling S, Tyler CR (2003) Endocrine disruption, parasites and pollutants in wild freshwater fish. Parasitology 126(Suppl):103–108

    Google Scholar 

  • Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    CAS  Google Scholar 

  • Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32–39

    Google Scholar 

  • Karlsson J, Sundberg H, Akerman G, Grunder K, Eklund B, Breitholtz M (2008) Hazard identification of contaminated sites—ranking potential toxicity of organic sediment extracts in crustacean and fish. J Soils Sediments 8:263–274

    CAS  Google Scholar 

  • Keiter S, Rastall A, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res Int 13:308–319

    CAS  Google Scholar 

  • Keiter S, Grund S, van Bavel B, Hagberg J, Engwall M, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube river. Anal Bioanal Chem 390:2009–2019

    CAS  Google Scholar 

  • Khim JS, Villeneuve DL, Kannan K, Koh CH, Snyder SA, Giesy JP (1999) Alkylphenols, polycyclic aromatic hydrocarbons (PAHs) and organochlorines in sediment from Lake Shihwa, Korea: Instrumental and bioanalytical characterization. Environ Toxicol Chem 18:2424–2432

    CAS  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104:8897–8901

    CAS  Google Scholar 

  • Kime DE (1995) The effects of pollution on reproduction in fish. Rev Fish Biol Fish 5:52–96

    Google Scholar 

  • Kjaer J, Olsen P, Bach K, Barlebo HC, Ingerslev F, Hansen M, Sorensen BH (2007) Leaching of estrogenic hormones from manure-treated structured soils. Environ Sci Technol 41:3911–3917

    Google Scholar 

  • Korner W, Bolz U, Sussmuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H (2000) Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40:1131–1142

    CAS  Google Scholar 

  • Labadie P, Cundy AB, Stone K, Andrews M, Valbonesi S, Hill EM (2007) Evidence for the migration of steroidal estrogens through river bed sediments. Environ Sci Technol 41:4299–4304

    CAS  Google Scholar 

  • Legler J, Dennekamp M, Vethaak AD, Brouwer A, Koeman JH, van der Burg B, Murk AJ (2002) Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci Total Environ 293:69–83

    CAS  Google Scholar 

  • Legler J, Leonards P, Spenkelink A, Murk AJ (2003) In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity. Ecotoxicology 12:239–249

    CAS  Google Scholar 

  • LFW (2005) Bericht zur Bestandsaufnahme für das Deutsche Donaugebiet. Landesamt für Wasserwirtschaft, Muenchen

    Google Scholar 

  • Li LA (2007) Polychlorinated biphenyl exposure and CYP19 gene regulation in testicular and adrenocortical cell lines. Toxicol in Vitro 21:1087–1094

    CAS  Google Scholar 

  • Li LA, Wang PW (2005) PCB126 induces differential changes in androgen, cortisol, and aldosterone biosynthesis in human adrenocortical H295R cells. Toxicol Sci 85:530–540

    CAS  Google Scholar 

  • Liney KE, Hagger JA, Tyler CR, Depledge MH, Galloway TS, Jobling S (2006) Health effects in fish of long-term exposure to effluents from wastewater treatment works. Environ Health Perspect 114(Suppl 1):81–89

    Google Scholar 

  • Liu R, Zhou JL, Wilding A (2004) Microwave-assisted extraction followed by gas chromatography-mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. J Chromatogr A 1038:19–26

    CAS  Google Scholar 

  • Luebcke-von Varel U, Streck G, Brack W (2008) Automated fractionation procedure for polycyclic aromatic compounds in sediment extracts on three coupled normal-phase high-performance liquid chromatography columns. J Chromatogr A 1185:31–42

    CAS  Google Scholar 

  • Maenpaa K, Kukkonen JV (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77:329–338

    CAS  Google Scholar 

  • Matthiessen P, Sumpter JP (1998) Effects of estrogenic substances in the aquatic environment. EXS 86:319–335

    CAS  Google Scholar 

  • Matthiessen P, Allen Y, Bamber S, Craft J, Hurts M, Hutchinson T, Fiest S, Katsiadaki I, Kirby M, Robinson C, Scott S, Thain J, Thomas K (2002) The impact of estrogenic and androgenic contamination on marine organisms in the United Kingdom—summary of the EDMAR programme. Mar Environ Res 54:645–649

    CAS  Google Scholar 

  • Mauricio R, Diniz M, Petrovic M, Amaral L, Peres I, Barcelo D, Santana F (2006) A characterization of selected endocrine disruptor compounds in a Portuguese wastewater treatment plant. Environ Monit Assess 118:75–87

    CAS  Google Scholar 

  • Meerts IATM, Letcher RJ, Hoving S, Lemmen JG, van der Burg B, Brouwer A (2001) In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol a compounds. Environ Health Perspect 109:399–407

    CAS  Google Scholar 

  • Mosman T (1983) Rapid colometric assay for growth and survival: Application to proliferation and cytotoxicity. J Immunol Methods 65:55–63

    Google Scholar 

  • Murk AJ, Legler J, van Lipzig MM, Meerman JH, Belfroid AC, Spenkelink A, van der Burg B, Rijs GB, Vethaak D (2002) Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environ Toxicol Chem 21:16–23

    CAS  Google Scholar 

  • Norris DO (1997) Vertebrate endocrinology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Oskarsson A, Ulleras E, Plant KE, Hinson JP, Goldfarb PS (2006) Steroidogenic gene expression in H295R cells and the human adrenal gland: adrenotoxic effects of lindane in vitro. J Appl Toxicol 26:484–492

    CAS  Google Scholar 

  • Otte JC, Abrahamson A, Andersson C, Engwall M, Keiter S, Olsman H, Hollert H, Brunström B (2008) Induction of ethoxyresorufin-O-deethylase (EROD) in the three-spined stickleback (Gasterosteus aculeatus, L.) exposed to extracts of sediments from the Danube River. Environ Int 34:1176–1184

    CAS  Google Scholar 

  • Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23:945–952

    CAS  Google Scholar 

  • Peck MR, Labadie P, Minier C, Hill EM (2007) Profiles of environmental and endogenous estrogens in the zebra mussel Dreissena polymorpha. Chemosphere 69:1–8

    CAS  Google Scholar 

  • Pedersen KH, Pedersen SN, Pedersen KL, Korsgaard B, Bjerregard P (2003) Estrogenic effects of dietary 4-tert-octylphenol in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 62:295–303

    CAS  Google Scholar 

  • Petrovic M, Sole M, Lopez de Alda MJ, Barcelo D (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem 21:2146–2156

    CAS  Google Scholar 

  • Pickford KA, Thomas-Jones RE, Wheals B, Tyler CR, Sumpter JP (2003) Route of exposure affects the oestrogenic response of fish to 4-tert-nonylphenol. Aquat Toxicol 65:267–279

    CAS  Google Scholar 

  • Piferrer F, Guiguen Y (2008) Fish gonadogenesis. Part 2: Molecular biology and genomics of fish sex differentiation. Rev Fish Sci 16:33–53

    Google Scholar 

  • Poutanen M, Isomaa V, Peltoketo H, Vihko R (1995) Role of 17 beta-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis. J Steroid Biochem Mol Biol 55:525–532

    CAS  Google Scholar 

  • Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, Wester R, Mason JI (1993) Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77:731–737

    CAS  Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    CAS  Google Scholar 

  • Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of Toxic Equivalency Factors (TEFs). Crit Rev Toxicol 21:51–88

    CAS  Google Scholar 

  • Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21

    CAS  Google Scholar 

  • Sanderson JT, Slobbe L, Lansbergen GW, Safe S, van den Berg M (2001) 2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cells. Toxicol Sci 61:40–48

    CAS  Google Scholar 

  • Santodonato J (1997) Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere 34:835–848

    CAS  Google Scholar 

  • Schluesener MP, Bester K (2005) Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation. Rapid Commun Mass Spectrom 19:3269–3278

    CAS  Google Scholar 

  • Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus. Environ Pollut 152:322–329

    CAS  Google Scholar 

  • Schultis T, Metzger JW (2004) Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere 57:1649–1655

    CAS  Google Scholar 

  • Segner H (2005) Developmental, reproductive, and demographic alterations in aquatic wildlife: Establishing causality between exposure to endocrine-active compounds (EACs) and effects. Acta Hydrochim Hydrobiol 33:17–26

    CAS  Google Scholar 

  • Seitz N, Bottcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2008) A novel statistical approach for the evaluation of comet assay data. Mutat Res 652:38–45

    CAS  Google Scholar 

  • Staels B, Hum DW, Miller WL (1993) Regulation of steroidogenesis in NCI-H295 cells: a cellular model of the human fetal adrenal. Mol Endocrinol 7:423–433

    CAS  Google Scholar 

  • Stewart AB, Spicer AV, Inskeep EK, Dailey RA (2001) Steroid hormone enrichment of Artemia nauplii. Aquaculture 202:177–181

    CAS  Google Scholar 

  • Sumpter JP, Johnson AC (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332

    CAS  Google Scholar 

  • Takahashi A, Higashitani T, Yakou Y, Saitou M, Tamamoto H, Tanaka H (2003) Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama River. Water Sci Technol 47:71–76

    CAS  Google Scholar 

  • Thomas KV, Balaam J, Hurst M, Nedyalkova Z, Mekenyan O (2004) Potency and characterization of estrogen-receptor agonists in United Kingdom estuarine sediments. Environ Toxicol Chem 23:471–479

    CAS  Google Scholar 

  • Toft G, Guillette LJ Jr (2005) Decreased sperm count and sexual behavior in mosquitofish exposed to water from a pesticide-contaminated lake. Ecotoxicol Environ Saf 60:15–20

    CAS  Google Scholar 

  • Ulrich B, Stahlmann R (2004) Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch Toxicol 78:252–268

    Google Scholar 

  • Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FX, Liem AK, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775–792

    Google Scholar 

  • Vermeirssen EL, Korner O, Schonenberger R, Suter MJ, Burkhardt-Holm P (2005) Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. Environ Sci Technol 39:8191–8198

    CAS  Google Scholar 

  • Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GB, Gerritsen A, de Boer J, Bulder AS, Grinwis GC, Kuiper RV, Legler J, Murk TA, Peijnenburg W, Verhaar HJ, de Voogt P (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59:511–524

    CAS  Google Scholar 

  • Vigano L, Arillo A, Bottero S, Massari A, Mandich A (2001) First observation of intersex cyprinids in the Po River (Italy). Sci Total Environ 269:189–194

    CAS  Google Scholar 

  • Vigano L, Mandich A, Benfenati E, Bertolotti R, Bottero S, Porazzi E, Agradi E (2006) Investigating the estrogenic risk along the river Po and its intermediate section. Arch Environ Contam Toxicol 51:641–651

    CAS  Google Scholar 

  • Vigano L, Benfenati E, van Cauwenberge A, Eidem JK, Erratico C, Goksoyr A, Kloas W, Maggioni S, Mandich A, Urbatzka R (2008) Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays. Chemosphere 73:1078–1089

    CAS  Google Scholar 

  • Villeneuve DL, Blankenship AL, Giesy JP (1998) Estrogen receptors-environmental xenobiotics. In: Denison MS, Helferich WG (eds) Toxicant–receptor interactions and modulation of gene expression. Lippincott-Raven Publishers, Philadelphia, pp 69–99

    Google Scholar 

  • Villeneuve DL, Ankley GT, Makynen EA, Blake LS, Greene KJ, Higley EB, Newsted JL, Giesy JP, Hecker M (2007) Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals. Ecotoxicol Environ Saf 68:20–32

    CAS  Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133

    CAS  Google Scholar 

  • Wagner M, Oehlmann J (2005) SOP for testing of chemicals: yeast estrogen ccreen/yeast androgen screen. J.W. Goethe University of Frankfurt am Main, Department of Aquatic Ecotoxicology, Germany

  • Wang J, Wu W, Henkelmann B, You L, Kettrup A, Schramm KW (2003) Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay. Atm Environ 37:3225–3235

    CAS  Google Scholar 

  • Watanabe M, Nakajin S (2004) Forskolin up-regulates aromatase (CYP19) activity and gene transcripts in the human adrenocortical carcinoma cell line H295R. J Endocrinol 180:125–133

    CAS  Google Scholar 

  • Weiss JM, Hamers T, Thomas KV, Linden S, Leonards PEG, Lamoree MH (2009) Masking effect of anti-androgens on androgenic activity in European river sediment unveiled by effect-directed analysis. Anal Bioanal Chem 394:1385–1397

    CAS  Google Scholar 

  • Williams RJ, Johnson AC, Smith JJL, Kanda R (2003) Steroid estrogen profiles along river stretches arising from sewage treatment works discharges. Environ Sci Technol 37:1744–1750

    CAS  Google Scholar 

  • Wilson VS, Bobseine K, Lambright CR, Gray LE Jr (2002) A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists. Toxicol Sci 66:69–81

    CAS  Google Scholar 

  • Wilson VS, Bobseine K, Gray LE Jr (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci 81:69–77

    CAS  Google Scholar 

  • Xu Y, Yu RM, Zhang X, Murphy MB, Giesy JP, Lam MH, Lam PK, Wu RS, Yu H (2006) Effects of PCBs and MeSO2-PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells. Chemosphere 63:772–784

    CAS  Google Scholar 

  • Zhang X, Yu RM, Jones PD, Lam GK, Newsted JL, Gracia T, Hecker M, Hilscherova K, Sanderson T, Wu RS, Giesy JP (2005) Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. Environ Sci Technol 39:2777–2785

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a personal grant to S. Grund by the scholarship program of the German Federal Environmental Foundation (DBU, Deutsche Bundesstiftung Umwelt). The authors would like to thank Prof. J.P. Sumpter of Brunel University, United Kingdom, for supplying the yeast cells for the YES assay, and Martin Wagner (University of Frankfurt) and Sibylle Maletz (RWTH Aachen) for introduction into the modified YES protocol. The authors are particularly grateful for the support and proof-reading of the manuscript by Nadja Seitz. Prof. Giesy was supported by the Canada Research Chair program and an at large Chair Professorship at the Department of Biology and Chemistry and Research Centre for Coastal Pollution and Conservation, City University of Hong Kong. The research was supported by a < LOQ 6971 and 6807). The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Grund.

Additional information

Communicated by Ake Bergman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grund, S., Higley, E., Schönenberger, R. et al. The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. Environ Sci Pollut Res 18, 446–460 (2011). https://doi.org/10.1007/s11356-010-0390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0390-3

Keywords

Navigation