Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6


Background, aim, and scope

Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1–3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions.

Materials and methods

The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography–mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises.


The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg−1 soil as compared to a TPH reduction from 183.85 to 151.10 g kg−1 soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m2 area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg−1 soil in 175 days.


Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants.


This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions.

Recommendations and perspectives

Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Atlas RM, Sayler G, Burlage RS, Bej AK (1992) Molecular approaches for environmental monitoring of microorganisms. BioTechniques 12:706–717

    CAS  Google Scholar 

  2. Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge contaminated sites. Appl Environ Microbiol 69:1431–1441

    Article  Google Scholar 

  3. Bossert ID, Compeau GC (1995) Cleanup of petroleum hydrocarbon contamination in soil. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Petroleum microbiology. MacMillan, New York

    Google Scholar 

  4. Cerniglia CE (1997) Fungal metabolism of polycylic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotech 19:324–333

    Article  CAS  Google Scholar 

  5. Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 55:729–739

    Google Scholar 

  6. Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: when is bioaugmentation needed? In: Hinchee RE, Fredrickson J, Alleman BD (eds) Bioaugmentation for site remediation. Battelle, Columbus, pp 1–14

    Google Scholar 

  7. Hao C, Zhang H, Haas R, Bai Z, Zhang B (2007) A novel community of acidophiles in an acid mine drainage sediment. World J Microbiol Biotechnol 23:15–21

    Article  Google Scholar 

  8. Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637

    Article  CAS  Google Scholar 

  9. Kloos K, Schloter M, Meyer O (2006) Microbial activity in an acid resin deposit: biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination. Environ Pollut 144:136–144

    Article  CAS  Google Scholar 

  10. Küsel K, Roth U, Drake HL (2002) Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ Microbiol 4:414–421

    Article  Google Scholar 

  11. Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol 10:447–455

    Article  Google Scholar 

  12. Mac Gillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59:1613–1618

    CAS  Google Scholar 

  13. Maila MP, Cloete TE (2004) Bioremediation through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3:349–360

    Article  CAS  Google Scholar 

  14. Mishra S, Jyot J, Kuhad RC, Lal B (2001) In situ bioremediation potential of an oily sludge degrading bacterial consortium. Curr Microbiol 43:328–335

    Article  CAS  Google Scholar 

  15. Prasad GS, Mayilraj S, Sood N, Singh V, Biswas K, Lal B (2005) Candida digboiensis TERI ASN6 sp. nov., a novel anamorphic yeast species from an acidic sludge contaminated oil field. Int J Syst Evol Microbiol 55:967–972

    Article  CAS  Google Scholar 

  16. Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  CAS  Google Scholar 

  17. Sood N, Lal B (2008) Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons under acidic conditions. J Environ Manag 90:1728–1736. doi:10.1016/j.jenvman.2008.11.026

    Article  Google Scholar 

  18. TEDDY (2006) TEDDY, TERI Energy Data Directory and Yearbook 2004/2005. Project coordinator: Pooja Goel. TERI, New Delhi, p 60

    Google Scholar 

  19. Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75

    Article  CAS  Google Scholar 

Download references


We are thankful to Dr. R. K. Pachauri, Director General, TERI for providing the infrastructure to carry out the present study and the Department of Biotechnology, Government of India for the financial support to carry out this study. We are grateful to the staff of Assam Oil Division for their help during fieldwork. The authors are grateful to Dr. D. K Tuli and Dr. M. P. Singh of IOCL R&D center for their support. The authors are in gratitude for the help provided by Vikas, Dileep, Akhil, Srivalli, and Neha for their kind help. The authors acknowledge the technical assistance of Abu Swaleh, Vinod, and Rambaran.

Author information



Corresponding author

Correspondence to Banwari Lal.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 388 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sood, N., Patle, S. & Lal, B. Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17, 603–610 (2010).

Download citation


  • Acidic oily sludge
  • Bioremediation
  • Candida digboiensis
  • Contaminated soil
  • Degradation
  • Total petroleum hydrocarbon