Advertisement

Environmental Science and Pollution Research

, Volume 16, Issue 7, pp 765–794 | Cite as

Phytoremediation of contaminated soils and groundwater: lessons from the field

  • Jaco VangronsveldEmail author
  • Rolf Herzig
  • Nele Weyens
  • Jana Boulet
  • Kristin Adriaensen
  • Ann Ruttens
  • Theo Thewys
  • Andon Vassilev
  • Erik Meers
  • Erika Nehnevajova
  • Daniel van der Lelie
  • Michel Mench
COST ACTION 859 • PHYTOREMEDIATION • REVIEW ARTICLE

Abstract

Background, aim, and scope

The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass.

Conclusions and perspectives

It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

Keywords

Field experiments Metals Organic contaminants Phytodegradation Phytoextraction Phytoremediation Phytostabilization Rhizodegradation Trace elements 

Notes

Acknowledgments

The authors are grateful to COST-Action 859 and all the members who contributed to the different meetings and workshops of this COST-Action. This COST-Action was very stimulating for exchange of information and supporting existing and creating new collaborations.

References

  1. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142CrossRefGoogle Scholar
  2. Anderson T (1997) Development of a phytoremediation handbook: consideration for enhancing microbial degradation in the rhizosphere. http://es.epa.gov/ncerga/ru/index.html
  3. Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing (-glutamylcysteine synthetase. Physiol Plant 109:143–149CrossRefGoogle Scholar
  4. Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid A, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192CrossRefGoogle Scholar
  5. Assunçao AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360CrossRefGoogle Scholar
  6. Bagga D, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent EDTA and different levels of soil pH. Remediation Winter, 77–85Google Scholar
  7. Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate heavy elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  8. Baker A, Reeves R, Hajar A (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytol 127:61–68CrossRefGoogle Scholar
  9. Bani A, Echevarria G, Sulçe S, Morel J-L, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 273:79–89CrossRefGoogle Scholar
  10. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefGoogle Scholar
  11. Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediat 11:416–424CrossRefGoogle Scholar
  12. Barcelo J, Poschenrieder C, Lombini A, Llugany M, Bech J, Dinelli E (2001) Mediterranean plant species for phytoremediation. Proceedings of the workshop of COST Action 837, WG2, held in Madrid, 5–7.04. 2001 (http://lbewww.epfl.ch/COST837)
  13. Bennett FA, Tyler EK, Brooks RR, Gregg PEH, Stewart RB (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In: Brooks R (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK, pp 249–259Google Scholar
  14. Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138CrossRefGoogle Scholar
  15. Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553CrossRefGoogle Scholar
  16. Blaylock M, Huang J (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–69Google Scholar
  17. Bleeker PA, Assuncao AGL, Teiga PA, de Koe T, Verkleij JAC (2002) Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci Total Environ 300:1–13CrossRefGoogle Scholar
  18. Boisson J, Mench M, Sappin-Didier V, Solda P, Vangronsveld J (1998) Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots. Agronomie 18:347–359CrossRefGoogle Scholar
  19. Boisson J, Ruttens A, Mench M, Vangronsveld J (1999) Immobilization of trace metals and arsenic by different soil additives evaluation by means of chemical extractions. Commun Soil Sci Plant Anal 30:365–387CrossRefGoogle Scholar
  20. Bouwman L, Vangronsveld J (2004) Rehabilitation of the nematode fauna in a phytostabilized heavily zinc contaminated sandy. J Soils Sediments 4(1):17–23CrossRefGoogle Scholar
  21. Bouwman LJ, Bloem PFAM, Römkens GT, Boon J, Vangronsveld J (2001) Beneficial effect of the growth of metal tolerant grass on biological and chemical parameters in copper- and zinc contaminated sandy soils. Minerva Biotecnol 13:19–26Google Scholar
  22. Brewer EP, Sauders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridisation between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771CrossRefGoogle Scholar
  23. Brooks R, Chambers M, Nicks L, Robinson B (1998) Phytomining. Trends Plant Sci 3(9):359–362CrossRefGoogle Scholar
  24. Brown SL, Henry CL, Compton H, Chaney RL, De Volder P (2000) Using municipal biosolids in combination with other residuals to restore zinc and lead contaminated mining areas. In: Luo Y M et al. (eds) Proc Int Conf Soil Remediation SoilRem2000, October 15–19, Hangzhou, China, pp 285–289Google Scholar
  25. Burken JG, Schnoor JL (1999) Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediat 1:139–151CrossRefGoogle Scholar
  26. Chandrappa HM (1982) Mutageneiss in sunflower (Helianthus annuus L). Thesis Abstr 8, 256–257. In: Schuster WH, (ed), Die Züchtung der Sonnenblumen (Helianthus annuus L.) Advanced in plant breeding 14, supplements to Journal of Plant Breeding pp 155, Paul Parey, BerlinGoogle Scholar
  27. Chaney RL, Li YM, Brown SL, Angle JS, Baker AJM (1995) Hyperaccumulator based phytoremediation of metal-rich soils. In: Current topics in plant biochemistry, physiology and molecular biology. Will plants have a role in bioremediation? Proceedings of 14th Annual Symposium. April 10–12, 1995. Columbia, Missouri, pp 33–34Google Scholar
  28. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefGoogle Scholar
  29. Chaney RL, Li YM, Angle J, Baker A, Reeves R, Brown S, Homer F, Malik M, Chin M (1999) Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FLGoogle Scholar
  30. Chaney RL, Angle JS et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Zeitschrift Fur Naturforschung C-a. J Biosci 60(3–4):190–198Google Scholar
  31. Chaney R, Angle J, Broadhurst C, Peters C, Tappero R, Sparks D (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1444CrossRefGoogle Scholar
  32. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefGoogle Scholar
  33. Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene: current knowledge with special emphasis on phytoremediation. Environ Sci Pollut Res 9:86–94CrossRefGoogle Scholar
  34. Crčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114CrossRefGoogle Scholar
  35. Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114CrossRefGoogle Scholar
  36. Davies RD, Carlton-Smith C (1980) Crops as indicators of the significance of contamination of soil by heavy metals. WCR Water Research Centre. Medmenham Laboratory, UK, p 44Google Scholar
  37. De Koe T (1994) Arsenic resistance in submediterranean Agrostis species. Ph.D. thesis, Vrije Universiteit, Amsterdam, NL, 127 ppGoogle Scholar
  38. del Rio M, Font R, Fernandez-Martinez J, Dominguez J, de Haro A (2000) Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. Fresenius Environ Bull 9:328–332Google Scholar
  39. Dickinson NM (2000) Strategies for sustainable woodland on contaminated soils. Chemosphere 41:259–263CrossRefGoogle Scholar
  40. Dickinson NM, Baker AJM, Doronilla A, Liadlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediat 11:97–114CrossRefGoogle Scholar
  41. Dietz AC, Schnoor JL (2001) Phytotoxicity of chlorinated aliphatics to hybrid poplar (Populus deltoides x nigra DN34). Environ Toxicol Chem 20:389–393CrossRefGoogle Scholar
  42. Dimitriou I, Eriksson J, Adler A, Aronsson P, Verwijst I (2006) Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ Pollut 142:160–169CrossRefGoogle Scholar
  43. Dirilgen N (1998) Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor. Chemosphere 37:771–783CrossRefGoogle Scholar
  44. Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59CrossRefGoogle Scholar
  45. Doucette WJ, Bugbee B, Hayhurst S, Plaehn WA, Downey DC, Taffinder SA, Edwards R (1998) Phytoremediation of dissolved phase trichloroethylene using mature vegetation. In: Wickramanayake GB, Hinchee RE (eds) Bioremediation and phytoremediation: chlorinated and recalcitrant compounds. Batelle, Columbus, pp 251–256Google Scholar
  46. Dunwell JM (1999) Transgenic crops: the next generation, or an example of 2020 vision. Ann Bot 84:269–277CrossRefGoogle Scholar
  47. Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430Google Scholar
  48. Ernst WHO (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham S (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer, New York, pp 17–25Google Scholar
  49. Ernst WHO (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358CrossRefGoogle Scholar
  50. Felix H (1997) Vor-Ort-Reinigung schwermetallbelasteter Böden mit Hilfe von metallakkumulierenden Pflanzen (Hyperakkumulatoren). TerraTech 2:47–49Google Scholar
  51. French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395CrossRefGoogle Scholar
  52. Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environ Pollut 144:40–50CrossRefGoogle Scholar
  53. Geebelen W (2002) Remediation of Pb contaminated soils by phytoextraction and amendment induced immobilization: biological aspects. Ph.D. thesis, Faculty of Sciences, Limburgs Universitair Centrum, Diepenbeek, BelgiumGoogle Scholar
  54. Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to evaluate the efficacy of amendment induced immobilization of lead in contaminated soils. Plant Soil 249:217–228CrossRefGoogle Scholar
  55. Geebelen W, Sappin-Didier V, Ruttens A, Carleer R, Yperman J, Bongué-Boma K, Mench M, van der Lelie D, Vangronsveld J (2006) Evaluation of cyclonic ash and commercial Na-silicates for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Environ Pollut 144:32–39CrossRefGoogle Scholar
  56. Germaine K, Keogh E, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Porteus Moore F, Moore ERB, Campbel CD, Ryan D, Dowling D (2004) Colonisation of Poplar trees by gfp expressing endophytes. FEMS Microbiol Ecol 48:109–118CrossRefGoogle Scholar
  57. Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. Glass Associates, Needham http://www.channel1.com/dglassassoc Google Scholar
  58. Glass D (2000) Economic potential of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 15–31Google Scholar
  59. Goulding KWT, Blake L (1998) Land use, liming and the mobilization of potentially toxic metals. Agric Ecosys Environ 67:135–144CrossRefGoogle Scholar
  60. Grant CA, Bailey LD (1997) Effects of phosphorus and zinc fertiliser management on cadmium accumulation in flaxseed. J Sci Food Agric 73:307–314CrossRefGoogle Scholar
  61. Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539CrossRefGoogle Scholar
  62. Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1:115–123CrossRefGoogle Scholar
  63. Griga M, Bjelkova M, Tejklova E (2003) Potential of flax (Linum usitatissimum) for heavy metal extraction and industrial processing of contaminated biomass – a review. In: Mench M, Mocquot B (eds) Risk assessment and sustainable land management using plants in trace element-contaminated soils. COST Action 837, 4th WG2 Workshop, Bordeaux’2002. INRA Centre Bordeaux-Aquitaine, Villenave d’Ornon, pp 173–179Google Scholar
  64. Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83CrossRefGoogle Scholar
  65. Guadagnini M (2000) In vitro-breeding for metal-accumulation in two tobacco (Nicotiana tabacum) cultivars. INAUGURAL-DISSERTATION No. 1288 der Mathematisch Naturwissenschftlichen Fakultät der Universität Freiburg in der Schweiz, p 109Google Scholar
  66. Gulz P, Gupta SK. (2001) Is it possible to improve arsenic uptake in sunflower by adding phosphate to As contaminated soils? In: Evans L (ed) Proc 6th ICOBTE Conference. University of Guelph, Ontario, Canada, p 319Google Scholar
  67. Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage 19:144–149CrossRefGoogle Scholar
  68. Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manage 19:187–192Google Scholar
  69. Harris A, Naidoo K, Nokes J, Walker T, Orton F (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17(2):194–200CrossRefGoogle Scholar
  70. Herzig R, Guadagnini M, Erismann KH, Müller-Schärer H (1997) Chancen der Phytoextraktion. Sanfte Bodendekontamination von Schwermetallen mit Hilfe biotechnisch verbesserter Akkumulatorpflanzen. TerraTech 2:49–52Google Scholar
  71. Herzig R, Guadagnini M, Rehnert A, Erismann KH (2003) Phytoextraction efficiency of in vitro-bred tobacco variants using a non-GMO approach. In: Vanek T, Schwitzguébel JP (eds) Phytoremediation Inventory—COST Action 837 View, Prague, UOCHB AVCR, p 73, ISBN 80-86241-19-XGoogle Scholar
  72. Herzig R, Nehnevajova E, Vangronsveld J, Ruttens A, Mastretta C (2005) In: PHYTAC—development of systems to improve phytoremediation of metal contaminated soils through improved phytoremediation. Final report of the 5th Framework Programme, Projects Nr QLRT-2001-00429 and QLRT-2001-02778 (NAS), December 2005, pp160–190Google Scholar
  73. Herzig R, Nehnevajova E, Bourigault C, Schwitzguébel JP (2007) Fast reduction of soluble zinc on a metal contaminated site using selected tobacco plants and appropriate fertilization techniques. COST Action 859 Management Committee Meeting and WG2 & 4 meeting. Fate of pollutants in the plant/rhizosphere system: fundamental aspects and their significance for field applications—prospects and research needs. 30. May–1. June 2007, Vilnius (Lithuania). Proceedings, pp 67–68Google Scholar
  74. Herzig R, Ricci A, Nehnevajova E, Schwitzguébel JP (2008) Assessing of the phytoextraction efficiency for soluble zinc and other heavy metals from a contaminated top soil using biotechnologically improved tobacco and sunflower mutants and appropriate fertilization techniques. COST Action 859 Management Committee and WG4 Meeting. Phytotechnologies in practice—biomass production, agricultural methods, legacy, legal and economic aspects. INERIS 15–17. October 2008 Verneuil-en-Halatte (F). Proceedings, pp 20–2Google Scholar
  75. Herzig R et al. (2009) Weiterführung der Phytoremediation 2008 am zinkbelasteten Deponiestandort«Grüenau-Buech-Alpenblick»in Bettwiesenim Auftrag der IMMO-DEVELOPMENT AG. 3. Interner Zwischenbericht 4.2.2009Google Scholar
  76. Hinesly T, Alexander D, Ziegler E, Barreti G (1978) Zinc and cadmium accumulation by corn inbreds grown on sludge amended soil. Agron J 70:425–428CrossRefGoogle Scholar
  77. Huang J, Chen J, Berti W, Cunningham S (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805CrossRefGoogle Scholar
  78. Jacquemin P (2006) The La Combe du Saut site rehabilitation (Salsigne) the Difpolmine project—application and evaluation of large scale phytostabilisation. Difpolmine Conference, 12–14 December 2006, MontpellierGoogle Scholar
  79. Johansson L, Xydas C, Messios N, Stoltz E, Greger M (2005) Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl Geochem 20:101–107CrossRefGoogle Scholar
  80. Jones CA, Inskeep WP, Neuman DR (1997) Arsenic transport in contaminated mine tailings following liming. J Environ Qual 26:433–439Google Scholar
  81. Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soil. Environ Pollut 107:225–231CrossRefGoogle Scholar
  82. Karlaganis G (2001) Swiss concept of soil protection. Commentary on the ordinance of 1 July 1998 relating to impacts on the soil (OIS). J Soils Sediments 1:1–16CrossRefGoogle Scholar
  83. Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783CrossRefGoogle Scholar
  84. Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81CrossRefGoogle Scholar
  85. King RF, Royle A, Putwain PD, Dickinson NM (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ Pollut 143:318–326CrossRefGoogle Scholar
  86. Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd moderately contaminated soils. Plant Soil 249:127–13CrossRefGoogle Scholar
  87. Knox AS, Kaplan DI, Hinton TG (2001) Remediation of metals and radionuclides by phytoextraction and sequestration. In: Evans L (ed) Proc 6th ICOBTE Conference. University of Guelph, Ontario, Canada, p 314Google Scholar
  88. Koehler J, Warrelmann J, Frische T, Behrend P, Walter U (2002) In-situ phytoremediation of TNT-contaminated soil. Acta Biotechnol 22:67–80CrossRefGoogle Scholar
  89. Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672CrossRefGoogle Scholar
  90. Krebs R, Gupta SK, Furrer G, Schulin R (1999) Gravel sludge as an immobilizing agent in soils contaminated by heavy metals; a field study. Water Air Soil Pollut 115:465–479CrossRefGoogle Scholar
  91. Kübler I (1984) Veränderungen verschiedener Inhaltsstoffe in einzelnen Sonnenblumenfrüchten nach mutagener Behandlung in M2 und M3. Fette-Seifen-Anstrichmittel 2:62–70CrossRefGoogle Scholar
  92. Kuboi T, Noguchi A, Yazaki A (1986) Family–dependent cadmium accumulation characteristics in higher plants. Plant Soil 92:405–415CrossRefGoogle Scholar
  93. Landberg T, Greger M (1994) Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land? In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Report 50. Swedish Univ Agric Sci, Uppsala, pp 133–144Google Scholar
  94. Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11:175–180CrossRefGoogle Scholar
  95. Lasat M (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:5–25Google Scholar
  96. Lasat M (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120CrossRefGoogle Scholar
  97. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522CrossRefGoogle Scholar
  98. Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microb 72:2331–2342CrossRefGoogle Scholar
  99. Lepp NW, Alloway B, Penny C, Warren G, Bochereau F (2000) The use of synthetic zeolites as in situ soil amendments to reduce metal transfer from soils to vegetables. In: Luo Y M et al (eds) Proc Int Conf Soil Remediation SoilRem 2000, October 15–19, Hangzhou, China, pp 280–284Google Scholar
  100. Li YM, Chaney RL, Angle JS, Chan KY, Kerschner BA, Baker AJM (1996) Genotypical differences in zinc and cadmium hyperaccumulation in Thlaspi caerulescens (abstract). Agronomy Abstracts 27Google Scholar
  101. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187CrossRefGoogle Scholar
  102. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mergeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  103. Lombi E, Zhao F, Dunham S, McGrath S (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20CrossRefGoogle Scholar
  104. Lothenbach B, Furrer G, Schulin R (1997) Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ Sci Technol 31:1452–1462CrossRefGoogle Scholar
  105. Lothenbach B, Furrer G, Schärli H, Schulin R (1999) Immobilization of zinc and cadmium by montmorillonite compounds: effects of aging and subsequent acidification. Environ Sci Technol 33:2945–2952CrossRefGoogle Scholar
  106. Ma LQY (1996) Factors influencing the effectiveness and stability of aqueous lead immobilization by hydroxyapatite. J Environ Qual 25:1420–1429Google Scholar
  107. Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539CrossRefGoogle Scholar
  108. Ma L, Komar K, Tu C, Zhang W, Cai Y, Kennelley E (2001) A fern that hyperaccumulates arsenic. Nature 409:579CrossRefGoogle Scholar
  109. Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. Sci Total Environ 307:239–257CrossRefGoogle Scholar
  110. Madejon E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139:40–52CrossRefGoogle Scholar
  111. Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315CrossRefGoogle Scholar
  112. Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. In: Fenter PA, Rivers ML, Sturchio NC, Sutton SR (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews in Mineralogy & Geochemistry, 49, Geochemical society and Mineralogical Society of America, pp 341–428Google Scholar
  113. Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387CrossRefGoogle Scholar
  114. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889Google Scholar
  115. Martins Dias S (2000) Nitroaromatic compounds removal in a vertical flow reed bed case study: industrial wastewater treatment. In: Abstracts of the Inter-COST Workshop on bioremediation, 15–18 November 2000, Sorrento, Italy, pp 117–118Google Scholar
  116. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. In: Harding SE, Tombs MP (eds) Biotechnology and genetic engineering reviews, vol. 23. Lavoisier, Paris, pp 175–207. ISBN 1-84585003-3Google Scholar
  117. Máthé-Gáspár G, Anton A (2005) Phytoremediation study: factors influencing heavy metal uptake of plants. Acta Biol Szeged 49:69–70Google Scholar
  118. Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007a) Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290:157–172CrossRefGoogle Scholar
  119. Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007b) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372CrossRefGoogle Scholar
  120. McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30:493–500CrossRefGoogle Scholar
  121. McGrath S, Sidoli C, Baker A, Reeves R (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers H, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer Academic, Dordrecht, pp 673–676Google Scholar
  122. McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125CrossRefGoogle Scholar
  123. McLaughlin MJ, Nardecchia D, Maier NA, Smart MK, Cozens GD (2000) Remediation of cadmium-contaminated soils. In: Luo YM et al (eds) Proc Int Conf Soil Remediation Soil Rem2000, October 15–19, Hangzhou, China, pp 275–279Google Scholar
  124. Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FMG (2005) Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ Pollut 137:354–364CrossRefGoogle Scholar
  125. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37:955–963CrossRefGoogle Scholar
  126. Mejare M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73CrossRefGoogle Scholar
  127. Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 151–182. ISBN ISBN 1-57059-531-3Google Scholar
  128. Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (2000a) In situ metal immobilisation and phytostabilisation of contaminated soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, USA, pp 323–358Google Scholar
  129. Mench MJ, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000b) Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie 20:383–397CrossRefGoogle Scholar
  130. Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assuncao A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202CrossRefGoogle Scholar
  131. Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediat 7:337–349CrossRefGoogle Scholar
  132. Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis—an efficient technique to enhance metal accumulation and extraction in sunflowers. Int J Phytoremediat 9:149–165CrossRefGoogle Scholar
  133. Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel JP (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremediat 11(4):329–346CrossRefGoogle Scholar
  134. Neugschwandtner RW, Tlustos P, Komárek M, Száková J (2008) Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144:446–454CrossRefGoogle Scholar
  135. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8CrossRefGoogle Scholar
  136. Newman LA, Doty SL, Gery KL, Heilman PE, Muiznieks I, Shang TQ, Siemieniec ST, Strand SE, Wang XP, Wilson AM, Gordon MP (1998) Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington. J Soil Contam 7:531–542CrossRefGoogle Scholar
  137. Nörtemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 51:751–759CrossRefGoogle Scholar
  138. Olson PE, Fletcher JS, Philp PR (2001) Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin. Environ Sci Pollut Res 8:243–249CrossRefGoogle Scholar
  139. Osorio J, Fernández-Martínez J, Mancha M, Garcés R (1995) Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 35:739–742Google Scholar
  140. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–352CrossRefGoogle Scholar
  141. Perez-de-Mora A, Madejon E, Burgos P, Cabrera F (2006) Trace element availability and plant growth in a mine spill-contaminated soil under assisted natural remediation II. Plants. Sci Total Environ 363:38–45CrossRefGoogle Scholar
  142. Peryea FJ, Kammereck R (1997) Phosphate-enhanced movement of arsenic out of lead arsenate contaminated topsoil and through uncontaminated subsoil. Water Air Soil Pollut 93:243–254Google Scholar
  143. Pletsch M, Santos de Araujo B, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687CrossRefGoogle Scholar
  144. Puschenreiter M, Stoger G, Lombi E, Horak O, Wenzel W (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sc 164:615–621CrossRefGoogle Scholar
  145. Rebedea I (1997) An investigation into the use of synthetic zeolites for in situ land reclamation. Ph.D. thesis, Liverpool John Moores University, p 244Google Scholar
  146. Reeves R, Baker A (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  147. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescenss for phytoremediation of contaminated soils. Plant Soil 203:47–56CrossRefGoogle Scholar
  148. Robinson BH, Mills TM, Petit D, Fung L, Green S, Clothier B (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306CrossRefGoogle Scholar
  149. Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272CrossRefGoogle Scholar
  150. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928CrossRefGoogle Scholar
  151. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668CrossRefGoogle Scholar
  152. Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84CrossRefGoogle Scholar
  153. Saxena P, Krishnaraj S, Dan T, Perras M, Vettakkorumakankav N (1999) Phytoremediation of heavy metals contaminated and polluted soils. In: Prasad MNV, Hagemaer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 305–329Google Scholar
  154. Schroeder P, Scheer C, Belford EJD (2001) Metabolism of organic xenobiotics in plants: conjugation enzymes and metabolic end points. Minerva Biotecnol 13:85–91Google Scholar
  155. Schröder P, Herzig R, Bojnov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world. Producing novel energy plants for growth on abandoned land. Environ Sci Pollut Res 15:196–204CrossRefGoogle Scholar
  156. Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35CrossRefGoogle Scholar
  157. Schwitzguébel JP (2001) Hype or hope: the potential of phytoremediation as an emerging green technology. Remediation 11(4):63–78CrossRefGoogle Scholar
  158. Schwitzguébel JP, van der Lelie D, Glass DJ, Vangonsveld J, Baker AJM (2002) Phytoremediation: European and American trends, successes, obstacles and needs. J Soils Sediments 2:91–99CrossRefGoogle Scholar
  159. Seaman JC, Arey JS, Bertsch PM (2001a) Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469CrossRefGoogle Scholar
  160. Seaman JC, Meehan T, Bertsch PM (2001b) Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments. J Environ Qual 30:1206–1213CrossRefGoogle Scholar
  161. Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065CrossRefGoogle Scholar
  162. Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001) Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotecnol 13:37–39Google Scholar
  163. Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79CrossRefGoogle Scholar
  164. Sopper WE (1993) Municipal sludge use for land reclamation. Lewis, Ann ArborGoogle Scholar
  165. Soriano MIA, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil: 256:253–264CrossRefGoogle Scholar
  166. Stuczynski T, Siebielec G, Daniels WL, McCarty GW, Chaney RL (2007) Biological aspects of metal waste reclamation with sewage sludge. J Environ Qual 36:1154–1162CrossRefGoogle Scholar
  167. Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals in contaminated soils using EDTA. Environ Pollut 113:111–120CrossRefGoogle Scholar
  168. Taghavi S, Barac T, Greenberg B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefGoogle Scholar
  169. Thewys T, Kuppens T (2008) Economics of willow pyrolysis after phytoextraction. Int J Phytoremediat 10(6):561–583CrossRefGoogle Scholar
  170. Thewys T, Witters N, Ruttens A, Van Slycken S, Meers E, Tack F, Vangronsveld J (2009) Economic viability of phytoremediation of an agricultual area using maize: part I, impact on the farmer’s income; part II, extra income for the farmer from anaerobic digestion. Int J Phytoremediat (in press)Google Scholar
  171. Tlustoš P, Száková J, Hrub J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423Google Scholar
  172. Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1:1–7CrossRefGoogle Scholar
  173. Trapp S, Zambrano KC, Kusk KC, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160CrossRefGoogle Scholar
  174. Trapp S, Larsen M, Burken J, Karlson U, Machakova J (2006) Monitoring natural attenuation with trees. International Symposium on Environmental Biotechnology, ISEB ESEB JSEB 2006, Leipzig, July 9–13, 2006, Book of abstracts, F&U confirm, Leipzig, Germany, p 409Google Scholar
  175. U.S. Environmental Protection Agency (US EPA) (2001) Remediation technology cost compendium—.ear 2000. EPA-542-R-01-009. Washington, DCGoogle Scholar
  176. U.S. Federal Remediation Technologies Roundtable (US FRTR) (2002) Remediation technologies screening matrix and reference guide, Version 3.0Google Scholar
  177. Vacha R, Podlesakova J, Nemecek J (2000) The use of organic and inorganic amendments for immobilization of trace elements in agricultural soils. In: Luo YM (ed) Int Conf Soil Remediation. Hangzhou, ChinaGoogle Scholar
  178. van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils. In situ inactivation and phytorestoration. Springer, Berlin, pp 31–50. ISBN ISBN: 1-57059-531-3Google Scholar
  179. van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and wate. CRC, Boca Raton, pp 265–281. ISBN ISBN 1-56670-450-2Google Scholar
  180. van der Lelie D, Schwitzguébel JP, Vangronsveld J, Baker AJM (2001) Assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:446A–452ACrossRefGoogle Scholar
  181. van der Lelie D, Barac T, Taghavi S, Vangronsveld J (2005) Response to Newman: new uses of endophytic bacteria to improve phytoremediation. Trends Biotechnol 23:8–9CrossRefGoogle Scholar
  182. Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383CrossRefGoogle Scholar
  183. Vangronsveld J (1998) Case studies in the field—Zn, Cd, Pb contaminated kitchen gardens. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 219–225. ISBN ISBN 1-57059-531-3Google Scholar
  184. Vangronsveld J, Cunningham SD (1998) Introduction to the concepts. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in-situ inactivation and phytorestoration. Springer, Berlin, pp 1–15. ISBN ISBN 1-57059-531-3Google Scholar
  185. Vangronsveld J, Van Assche F, Clijsters H (1995a) Reclamation of a bare industrial area contaminated by non ferrous metals—in situ metal immobilization and revegetation. Environ Pollut 87:51–59CrossRefGoogle Scholar
  186. Vangronsveld J, Sterckx J, Van Assche F, Clijsters H (1995b) Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Explor 52:221–229CrossRefGoogle Scholar
  187. Vangronsveld J, Colpaert J, Van Tichelen K (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140CrossRefGoogle Scholar
  188. Vangronsveld J, Ruttens A, Colpaert J, Van der Lelie D (2000a) In situ fixation and phytostabilization of metals in polluted soils. In: Luo YM et al (eds) Proc Int Conf Soil Remediation SoilRem2000. October 15–19, Hangzhou, China, pp 262–267Google Scholar
  189. Vangronsveld J, Ruttens A, Mench M, Boisson J, Lepp NW, Edwards R, Penny C, van der Lelie D (2000b) In situ inactivation and phytoremediation of metal/metalloid contaminated soils: field experiments. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Bioremediation of contaminated soils, 2nd edn. Marcel Dekker, New York, pp 859–884. ISBN ISBN 0-8247-0333-2Google Scholar
  190. Vashegyi A, Mezôsi G, Barta K, Farsang A, Dormány G, Bartha B, Pataki S, Erdei L (2005) Phytoremediation of heavy metal pollution: a case study. Acta Biol Szeged 49:77–79Google Scholar
  191. Vassilev A, Schwitzguébel JP, Thewys T, van der Lelie D, Vangronsveld J (2004a) The use of plants for remediation of metal contaminated soils. Scientific World J 4:9–34Google Scholar
  192. Vassilev A, Lidon FC, Ramalho JC, Do Céu Matos M, da Graca M (2004b) Cadmium accumulation and photosynthesis performance of cadmium-exposed barley plants. J Plant Nutr 27:775–795CrossRefGoogle Scholar
  193. Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282CrossRefGoogle Scholar
  194. Watanabe M (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186CrossRefGoogle Scholar
  195. Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJM, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33CrossRefGoogle Scholar
  196. Wenzel WW, Unterbruner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96CrossRefGoogle Scholar
  197. Westberg M, Gromulski J (1996) Termisk kadmiumrening av trädbränsleaskor. Report 1996, 30, Nutek. Stockholm, Sweden (summary in English)Google Scholar
  198. Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009a) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration. Environ Sci Pollut Res . doi: 10.1007/s11356-009-0154-0 Google Scholar
  199. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254CrossRefGoogle Scholar
  200. Yankov B, Tahsin N (2001) Accumulation and distribution of Pb, Cu, Zn and Cd in sunflower (Helianthus annuus L.) grown in an industrially polluted region. Helia 24:131–136Google Scholar
  201. Yankov B, Delibaltova V, Bojinov M (2000) Content of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars grown in industrially polluted regions. Plant Sci (BG) 37:525–531Google Scholar
  202. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43CrossRefGoogle Scholar
  203. Zheljazkov V, Nielsen NE (1996a) Effect of heavy metals on peppermint and cornmint. Plant Soil 178:59–66CrossRefGoogle Scholar
  204. Zheljazkov V, Nielsen NE (1996b) Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J Essent Oil Res 8:259–274Google Scholar
  205. Zheljazkov VD, Jeliazkova EA, Craker LE, Yankov B, Georgieva T, Kolev T, Kovatcheva N, Stanev S, Margina A (1999) Heavy metal uptake by mint. Acta Hort 500:111–117Google Scholar
  206. Zhu Y, Pilon-Smits E, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79CrossRefGoogle Scholar
  207. Zimmer D, Baum C, Leinweber P, Hrynkiewics K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytoremediat 11:200–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jaco Vangronsveld
    • 1
    Email author
  • Rolf Herzig
    • 2
    • 3
  • Nele Weyens
    • 1
  • Jana Boulet
    • 1
  • Kristin Adriaensen
    • 1
  • Ann Ruttens
    • 1
  • Theo Thewys
    • 1
  • Andon Vassilev
    • 4
  • Erik Meers
    • 5
  • Erika Nehnevajova
    • 2
    • 3
  • Daniel van der Lelie
    • 6
  • Michel Mench
    • 7
  1. 1.Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  2. 2.Phytotech-Foundation (PT-F)BernSwitzerland
  3. 3.AGB-Arbeitsgemeinschaft für BioindikationUmweltbeobachtung und ökologische PlanungBernSwitzerland
  4. 4.Agricultural University of PlovdivPlovdivBulgaria
  5. 5.Laboratory of Analytical Chemistry and Applied EcochemistryGhent UniversityGhentBelgium
  6. 6.Biology DepartmentBrookhaven National Laboratory (BNL)UptonUSA
  7. 7.UMR BIOGECO INRA 1202University of Bordeaux 1TalenceFrance

Personalised recommendations