Environmental Science and Pollution Research

, Volume 16, Issue 6, pp 630–640 | Cite as

Temporal concentration changes of DEET, TCEP, terbutryn, and nonylphenols in freshwater streams of Hesse, Germany: possible influence of mandatory regulations and voluntary environmental agreements



Background, aim, and scope

The present study focuses on the temporal concentration changes of four common organic pollutants in small freshwater streams of Hesse, Germany. The substances (tris(2-chloroethyl)phosphate (TCEP), the technical isomer mixture of 4-nonylphenol (NP), 2-(t-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine (terbutryn), and N,N-diethyl-m-toluamide (DEET)) are subject to differing regulations. Whereas the use of NP and the related nonylphenolethoxylates (NPEOs) are almost completely banned under EU directive 2003/53/EC, the herbicide terbutryn is only restricted for use as a herbicide in the majority of member states of the European Union (EU). In contrast, TCEP and DEET are not regulated by legislation, but have been replaced in some products through consumer pressure. The impact of regulation on the environmental concentrations of these pollutants is discussed.

Materials and methods

The substances were monitored in small freshwater streams in the Hessisches Ried region, Germany, during the period September 2003 to September 2006. The samples were extracted with solid phase extraction (SPE) and analyzed by coupled gas chromatography–mass spectrometry (GC–MS).


All target compounds were detected frequently within the fresh water streams of the study area. Monitoring in the study area revealed a significant concentration decrease only for NP. For the other three compounds, no significant concentration decrease was observed. Terbutryn concentrations and loads showed a seasonal trend with higher levels in summer and autumn, but were also present in winter and spring. Concentrations of TCEP and DEET were in the range of prior investigations.


The decrease of NP concentrations and loads during the sampling period indicates that the regulation of NP and NP ethoxylates has led to a significant improvement in reducing the occurrence of this compound in the aquatic environment. Furthermore, the ban on agricultural use of terbutryn at the end of 2003 had no discernable influence on terbutryn concentrations in the following years.


The benefits of national bans or self-regulations by manufacturers on several chemicals appear to be limited. In contrast, the European-wide ban (of NP) revealed to be effective in preventing the substance from entering the aquatic environment on a large scale and reduced the NP concentration to an acceptable level (i.e., below the PNEC).

Recommendations and perspectives

Further research is needed to investigate diffuse sources and point sources of terbutryn not related to agriculture. Further research is required to find an explanation for the ongoing high concentration of TCEP in river water despite of the supposed replacement of TCEP by TCPP already in the 1990s.


DEET Flame retardants Monitoring Nonylphenol Organic pollutants TCEP Terbutryn Voluntary agreements 


  1. Andresen JA, Grundmann A, Bester K (2004) Organophosphorus flame retardants and plasticisers in surface waters. Sci Tot Env 332:155–166CrossRefGoogle Scholar
  2. Arimura T, Hibiki A, Katayama H (2008) Is a voluntary approach an effective environmental policy instrument? A case for environmental management systems. J Environ Econ Manage 55:281–295Google Scholar
  3. Baran N, Mouvet C, Negrel P (2007) Hydrodynamic and geochemical constraints on pesticide concentrations in the groundwater of an agricultural catchment (Brevilles, France). Environ Pollut 148:729–738CrossRefGoogle Scholar
  4. Bell JW, Veltri JC, Page BC (2002) Human exposures to N, N-diethyl-m-toluamide insect repellents reported to the American Association of Poison Control Centers 1993–1997. Int J Tox 21:341–352CrossRefGoogle Scholar
  5. Blackman A, Lahiri B, Pizer W, Planter MR, Munoz Pina C (2007) Voluntary environmental regulation in developing countries - Mexico’s clean industry program. Disussion paper 07–36, Resources for the Future, Washington DCGoogle Scholar
  6. Bolz U, Hagenmaier H, Körner W (2001) Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Württemberg, south-west Germany. Environ Pollut 115:291–302CrossRefGoogle Scholar
  7. Brust K, Licht O, Hultsch V, Jungmann D, Nagel R (2001) Effects of terbutryn on Aufwuchs and Lumbriculus variegatus in artificial indoor streams. Environ Toxicol Chem 20:2000–2007CrossRefGoogle Scholar
  8. Costanzo SD, Watkinson AJ, Murby EJ, Kolpin DW, Sandstrom MW (2007) Is there a risk associated with the insect repellent DEET (N, N-diethyl-m-toluamide) commonly found in aquatic environments? Sci Tot Env 384:214–220CrossRefGoogle Scholar
  9. Dall’Osto M, Harrison RM, Charpantidou E, Loupa G, Rapsomanikis S (2007) Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry. Sci Tot Env 384:120–133CrossRefGoogle Scholar
  10. Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Asses Rev 24:711–733Google Scholar
  11. Davies MH, Soto RJ, Stewart RD (1988) Toxicity of diethyltoluamide-containing insect repellents. JAMA 259:2239–2240CrossRefGoogle Scholar
  12. DIN 32645 (1994) Nachweis-, Erfassungs- und Bestimmungsgrenze. DIN Deutsches Institut für Normung e.V., BerlinGoogle Scholar
  13. Dsikowitzky L (2002) Umweltgeochemische Charakterisierung der niedermolekularen organischen Fracht des Flußsystems Lippe. Diss. RWTH, AachenGoogle Scholar
  14. Dsikowitzky L, Schwarzbauer J, Kronimus A, Littke R (2004a) The anthropogenic contribution to the organic load of the Lippe River (Germany). Part I: qualitative characterisation of low-molecular weight organic compounds. Chemosphere 57:1275–1288CrossRefGoogle Scholar
  15. Dsikowitzky L, Schwarzbauer J, Kronimus A, Littke R (2004b) The anthropogenic contribution to the organic load of the Lippe River (Germany). Part II: quantification of specific organic contaminants. Chemosphere 57:1289–1300CrossRefGoogle Scholar
  16. ECB (2002) 4-nonylphenol (branched) and nonylphenol. European Union Risk Assessment Report, LuxembourgGoogle Scholar
  17. ECB (2006) Risk Assessment Report on Tris (2-chloroethyl) phosphate (TCEP). European Chemicals Bureau, LuxembourgGoogle Scholar
  18. Fooken C (1997) Orientierende Messungen gefährlicher Stoffe. landesweite Untersuchung auf organische Spurenverunreinigungen in hessischen Fließgewässern, Abwässern und Klärschlämmen; 1991–1996. Hess. Landesanst. für Umwelt, WiesbadenGoogle Scholar
  19. Fooken C (2000) Orientierende Messungen gefährlicher Stoffe. landesweite Untersuchung auf organische Spurenverunreinigungen in hessischen Fließgewässern, Abwässern und Klärschlämmen; 1991–2001. Hess. Landesanst. für Umwelt, WiesbadenGoogle Scholar
  20. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347:13–18CrossRefGoogle Scholar
  21. Fries E, Püttmann P (2003a) Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany). J Environ Monit 5:346–352CrossRefGoogle Scholar
  22. Fries E, Püttmann P (2003b) Occurrence and behaviour of 4-nonylphenol in river water of Germany. J Environ Monit 5:598–603CrossRefGoogle Scholar
  23. Fritz M (2008) Kampf gegen Pestizide im Bach, Echo-online GmbH, Darmstadt (20.01.2008)Google Scholar
  24. Göbel K (1996) Oberirdische Gewässer im Hessischen Ried. Teilbeitrag des Grundwasserbewirtschaftungsplans Hessisches Ried. WiesbadenGoogle Scholar
  25. Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T (2002) Endocrine disrupting nonylphenols are ubiquitous in food. Environ Sci Technol 36:1676–1680CrossRefGoogle Scholar
  26. Haley RW, Kurt TL (1997) Self-reported exposure to neurotoxic chemical combinations in the Gulf War. A cross-sectional epidemiologic study. JAMA 277:231–237CrossRefGoogle Scholar
  27. Hartmann PC, Bürgi D, Giger W (2004) Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 57:781–788CrossRefGoogle Scholar
  28. Heemken OP, Reincke H, Stachel B, Theobald N (2001) The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 45:245–260CrossRefGoogle Scholar
  29. Hegemann W, Busch K, Spengler P, Metzger JW (2002) Auswertung der Ergebnisse von stufenweise auf endokrin wirksame Stoffe beprobten Kläranlagen. pp 96-106 In: Endokrin wirksame Substanzen in Abwasser und Klärschlamm-Neueste Ergebnisse aus Wissenschaft und Technik. Bilitewski, B. Weltin, D. Werner, P., DresdenGoogle Scholar
  30. Höhne C, Püttmann W (2006) Verhalten von ausgewählten Organophosphaten (Flammschutzmittel) und Alkylphenolen (Antioxidantien) in Kläranlagen. GWF 3:235–241Google Scholar
  31. Höhne C, Püttmann W (2008) Occurrence and temporal variations of the xenoestrogens bisphenol A, 4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants. Environ Sci Pollut Res 15:405–416CrossRefGoogle Scholar
  32. Hök F (2007) Towels with a dirty past. 89628, Swedish Society for Nature ConservationGoogle Scholar
  33. Isobe T, Hajime N, Arisa N, Takada H (2001) Distribution and behavior of nonylphenol, octylphenol and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol 35:1041–1049CrossRefGoogle Scholar
  34. Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372CrossRefGoogle Scholar
  35. Jobst H (1998) Chlorophenols and nonylphenols in sewage sludges. Part II: did contents of pentachlorophenol and nonylphenols reduce? Acta Hydrochim Hydrobiol 26:344–348CrossRefGoogle Scholar
  36. Kemmlein S, Hahn O, Jann O (2003) Emissionen von Flammschutzmitteln aus Bauprodukten und Konsumgütern: Forschungsbericht 29965321. Umweltbundesamt, BerlinGoogle Scholar
  37. Knepper TP, Pilz N, Seel P (1996) Das Insektenrepellent Diethyltoluamid (DEET): Ein neuer Problemstoff für die Wasserwerke? ARW-Jahresbericht 53:65–77Google Scholar
  38. Knepper TP, Maes A (2003) Ergebnisse der Gewässer-Sonderuntersuchungen auf die Insektenrepellents DEET und Bayrepel. ARW-Jahresbericht 60:71–86Google Scholar
  39. Knepper TP (2004a) Analysis and fate of insect repellents. Water Sci Technol 50:301–308Google Scholar
  40. Knepper TP (2004b) Analysis and mass spectrometric characterization of the insect repellent Bayrepel and its main metabolite Bayrepel-acid. J Chromatogr A 1046:159–166Google Scholar
  41. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  42. Leisewitz A, Schwarz W (1997) Stoffströme wichtiger endokrin wirksamer Industriechemikalien. Forschungsbericht 10601076, BundesumweltamtGoogle Scholar
  43. Leisewitz A, Kruse H, Schramm E (2001a) Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. Forschungsbericht 297 44 542 im Rahmen des Umweltforschungsplans des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit, Öko-Recherche, Frankfurt am MainGoogle Scholar
  44. Leisewitz A, Seel P, Fengler S (2001b) Orientierende Messungen gefährlicher Stoffe. landesweite Untersuchung auf organische Spurenverunreinigungen in hessischen Fließgewässern, Abwässern und Klärschlämmen; 1991–2001; Ergänzender Bericht zu 1999–2001. Hess. Landesanst. für Umwelt, WiesbadenGoogle Scholar
  45. LfU (2007) Bayrisches Landesamt für Umwelt, Chemikalien in der Umwelt—Medium WasserGoogle Scholar
  46. Marklund A, Andersson B, Haglund P (2003) Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 53:1137–1146CrossRefGoogle Scholar
  47. Menge D (2005) Gewässerbelastung durch den Eintrag von Bioziden aus Dachfarben: eine Risikoabschätzung. Lua Nrw, EssenGoogle Scholar
  48. Morgenstern RD, Pizer WA (2007) How well do voluntary environmental programs really work? Resources 164:23–26Google Scholar
  49. Nitschke L, Schussler W (1998) Surface water pollution by herbicides from effluents of waste water treatment plants. Chemosphere 36:35–41CrossRefGoogle Scholar
  50. Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34:3523–3530CrossRefGoogle Scholar
  51. Prösch J, Puchert W, Gluschke M (2000) Vorkommen von Chloralkylphosphaten in den Abläufen kommunaler Kläranlagen des deutschen Ostsee-Einzugsgebietes. Vom Wasser 95:87–96Google Scholar
  52. Prösch J, Pansch G, Puchert W (2002) Vorkommen von TCEP und TCPP in Badeseen sowie in Hausbrunnen ländlicher Gebiete Mecklenburg-Vorpommerns. Vom Wasser 98:159–164Google Scholar
  53. Quednow K, Püttmann W (2007) Monitoring terbutryn pollution in small rivers of Hesse. Germany J Environ Monit 9:1337–1343CrossRefGoogle Scholar
  54. Quednow K, Püttmann W (2008a) Endocrine disruptors in freshwater streams of Hesse, Germany: changes in concentration levels in the time span from 2003 to 2005. Environ Pollut 152:476–483CrossRefGoogle Scholar
  55. Quednow K, Püttmann W (2008b) Organophosphates and synthetic musk fragrances in freshwater streams of Hesse/Germany. Clean 36:70–77Google Scholar
  56. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77:3807–3838CrossRefGoogle Scholar
  57. Richter S, Nagel R (2007) Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo[a]pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere 66:603CrossRefGoogle Scholar
  58. Schaffner C, Ahel M, Giger W (1987) Field studies on the behavior of organic micropollutants during infiltration of river water to ground water. Water Sci Technol 19:1195–1196Google Scholar
  59. Selim S, Hartnagel RE, Osimitz TG, Gabriel KL, Schoenig GP (1995) Absorption, metabolism, and excretion of N, N-diethyl-m-toluamide following dermal application to human volunteers. Toxicol Sci 25:95–100CrossRefGoogle Scholar
  60. Soto AM, Justitia H, Wray JW, Sonnenschein C (1991) p-Nonylphenol, an estrogenic xenobiotic released from modified polystyrene. Environ Health Perspect 92:167–173CrossRefGoogle Scholar
  61. Tappe W, Groeneweg J, Jantsch B (2002) Diffuse atrazine pollution in German aquifers. Biodegradation 13:3–10CrossRefGoogle Scholar
  62. Thiele B, Gunther K, Schwuger MJ (1997) Alkylphenol ethoxylates: trace analysis and environmental behavior. Chem Rev 97:3247–3272CrossRefGoogle Scholar
  63. Umezu T, Yonemoto J, Soma Y, Suzuki T (1998) Tris(2-chloroethyl) phosphate increases ambulatory activity in mice: pharmacological analyses of its neurochemical mechanism. Toxicol Appl Pharmacol 148:109–116CrossRefGoogle Scholar
  64. Voutsa D, Hartmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res 13:333–341CrossRefGoogle Scholar
  65. Wahle BS, Sangha GK, Elcock LE, Sheets LP, Christenson WR (1999) Carcinogenicity testing in the CD-1 mouse of a prospective insect repellant (KBR 3023) using the dermal route of exposure. Toxicology 142:29–39CrossRefGoogle Scholar
  66. Weigel S, Kuhlmann J, Huhnerfuss H (2002) Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci Tot Env 295:131–141CrossRefGoogle Scholar
  67. Ziegler A, Rennings K (2004) Determinants of environmental innovations in Germany: do organizational measures matter? A discrete choice analysis at the firm level. ZEW—Zentrum für Europäische WirtschaftsforschungGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental SciencesJ. W. Goethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations