Skip to main content

Advertisement

Log in

Complementing habitat distribution model with land use land cover for conservation of the rare and threatened tree Magnolia punduana Hk. f & Th. in northeast India

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Predictive distribution models are widely used in species conservation planning. However, identifying specific sites for undertaking conservation action such as reintroduction pose a practical challenge for practitioners. We demonstrate that the potential habitat distribution models intersected with existing land use and land cover (LULC) map helped in identifying the specific conservation areas with greater confidence. We used a case of Magnolia punduana Hk. f & Th. (Magnoliaceae)—a threatened and rare tree species distributed in the Khasi, Jaintia and Garo Hills of northeast India at an elevation range of 800–1600 m asl. We modeled the distribution of potential habitats of the species using maximum entropy (Maxent) software, moderate resolution imaging spectroradiometer (MODIS) imageries, and ASTER-based digital elevation data. Amongst the environmental variables, elevation and the EVI for the months of May, June and July had a collective contribution of > 70%, indicating their dominant role in determining the potential habitat. The predicted potential habitat of the species covered ~ 2.88% area of the state in the southern part of the Khasi and Jaintia hills with a few patches in Garo hills. However, intersection of the potential distribution area map with the existing forest cover map of the study area showed ~ 3853 ha of the state, has high suitability. The ground-truthing of the high suitability regions revealed that they are similar to the species’ original habitat and may support conservation-related activities such as habitat protection, restoration, and species (re)introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari D, Barik SK, Upadhaya K (2012) Habitat distribution modeling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng 40:37–43

    Google Scholar 

  • Adhikari D, Mir AH, Upadhaya K, Iralu V, Roy DK (2018) Abundance and habitat-suitability relationship deteriorate in fragmented forest landscapes: a case of Adinandra griffithii Dyer, a threatened endemic tree from Meghalaya in northeast India. Ecol Proc 7:3. https://doi.org/10.1186/s13717-018-0114-z

    Article  Google Scholar 

  • Aguilar-Soto V, Melgoza-Castillo A, Villarreal-Guerrero F, Wehenkel C, Pinedo-Alvarez C (2015) Modeling the potential distribution of Picea chihuahuana Martínez, an endangered species at the Sierra Madre Occidental, Mexico. Forests 6:692–707

    Google Scholar 

  • Balakrishnan NP (1981) Flora of Jowai, vol 1. Botanical Survey of India, Howrah

    Google Scholar 

  • Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142:155–184

    CAS  Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854–866

    Google Scholar 

  • Barik SK, Tiwari ON, Adhikari D, Singh PP, Tiwary R, Barua S (2018) Geographic distribution pattern of threatened plants of India and steps taken for their conservation. Curr Sci 14(3):470–503

    Google Scholar 

  • Barr AG, Black TA, Hogg EH, Griffis TJ, Theede A, Kljun N, Morgenstern K, Nesic Z (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Change Biol 13:561–576

    Google Scholar 

  • Borthakur SK, Baruah PS, Deka K, Das P, Sarma B, Adhikari D, Tanti B (2018) Habitat distribution modelling for improving conservation status of Brucea mollis Wall. ex Kurz.– An endangered potential medicinal plant of Northeast India. J Nat Conserv 43:104–110

    Google Scholar 

  • Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79(3):571–580

    CAS  PubMed  Google Scholar 

  • Brummitt NA, Bachman SP (2010) Plants under pressure-a global assessment: the first report of the IUCN sampled red list index for plants. Royal Botanic Gardens, Kew

    Google Scholar 

  • Burkart M (2001) River corridor plants (Stromtalpflanzen) in Central European lowland: a review of a poorly understood plant distribution pattern. Glob Ecol Biogeo 10:449–468

    Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of the forest types of India. Government of India Press, New Delhi, India

    Google Scholar 

  • Chen JQ, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clear-cut edges into old-growth douglas-fir forests. Ecol Appl 5:74–86

    Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc B 365:3149–3160

    Google Scholar 

  • Chuine I, Beaubien E (2001) Phenology is a major determinant of temperate tree range. Ecol Lett 4(5):500–510

    Google Scholar 

  • Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24(2):111–121

    Google Scholar 

  • Deka K, Baruah PS, Sarma B, Borthakur SK, Tanti B (2017) Preventing extinction and improving conservation status of Vanilla borneensis Rolfe - a rare, endemic and threatened orchid of Assam, India. J Nat Conserv 37:39–46

    Google Scholar 

  • Dhyani S, Kadaverugu R, Pujari P (2020) Predicting impacts of climate variability on Banj oak (Quercus leucotrichophora A. Camus) forests: understanding future implications for Central Himalayas. Reg Environ Change 20:113

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeo 16(3):265–280

    Google Scholar 

  • Flather CH, Sieg CH (2007) Species rarity: definition causes and classification. In: Raphael MG, Molina R, Molina N (eds) Conservation of rare or little-know species. Island Press, Washington

    Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gaston KJ (1996) Species richness: measure and measurement. In: Gaston KJ (ed) Biodiversity: a biology of numbers and difference. Blackwell Science, Oxford

    Google Scholar 

  • Giulietti AM, Rapini A, Andrade MJG, Queiroz LP, Silva JMC (2009) Plantas raras do Brasil. Conservação Internacional, Belo Horizonte

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Loveland T (2013) High- resolution global maps of 21st- century forest cover change. Science 342:850–853

    CAS  PubMed  Google Scholar 

  • Haridasan K, Rao RR (1985) Forest Flora of Meghalaya, vol I. Bishen Singh Mahendrapal Singh, Dehra Dun, India

    Google Scholar 

  • Heywood VH, Waston RT (1995) Global Biodiversity Assessment. UNEP, Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, vulnerability and adaptation. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Working Group 2. Cambridge University Press, Port Chester, NY

  • Iralu V, Upadhaya K (2015) Notes on Magnolia punduana Hk. f. & Th. (Magnoliopsida: Magnoliales: Magnoliaceae): an endemic and threatened tree species of northeastern India. J Threat Taxa 7(9):7573–7576

    Google Scholar 

  • Iralu V, Pao NT, Upadhaya K (2019) An assessment of population structure and regeneration status of Magnolia punduana Hk. F. & Th. (Magnoliaceae) in fragmented forests of northeast India. J for Res 31:937–943

    Google Scholar 

  • Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free– flowing and a regulated river. J Ecol 93:1094–1103

    Google Scholar 

  • Kadavul K, Parthasarathy N (2001) Population analysis of Alphonsea sclerocarpa Thw. (Annonaceae) in the Kalyaran Hills of Eastern Ghats India. Int J Ecol Environ Sci 27:51–54

    Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1(4):094–098

    Google Scholar 

  • Kunin WE, Gaston KJ (1993) The biology of rarity: patterns causes and consequences. Trends Ecol Evol 8(8):298–301

    CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press

    Google Scholar 

  • Linskey L (2014) Distribution and conservation of threatened plant species on Anegada, British Virgin Islands. M.Sc Thesis, Imperial College London

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeo 17(2):145–151

    Google Scholar 

  • Majumdar K, Adhikari D, Datta BK, Barik SK (2019) Identifying corridors for landscape connectivity using species distribution modeling of Hydnocarpus kurzii (King) Warb., a threatened species of the Indo-Burma Biodiversity Hotspot. Landsc Ecol Eng 15:13–23

    Google Scholar 

  • Markham J (2014) Rare species occupy uncommon niches. Sci Rep 4:6012. https://doi.org/10.1038/srep06012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClish DK (1989) Analyzing a portion of the ROC curve. Med Decis Making 9:190–195

    CAS  PubMed  Google Scholar 

  • Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Appl 22(1):1–26

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC

    Google Scholar 

  • Morin X, Augspurger C, Chuine I (2007) Process-based modeling of tree species’ distributions: what limits temperate tree species’ range boundaries? Ecol 88:2280–2291

    Google Scholar 

  • Murienne J, Guilbert E, Grandcolas P (2009) Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biol J Linn Soc 97(1):177–184

    Google Scholar 

  • Nayar MP, Sastry ARK (1987) Red Data Book of Indian Plants, 3 Vols. Botanical Survey of India, Howrah (Calcutta), India

    Google Scholar 

  • Nayar MP, Sastry ARK (1990) Red Data Book of Indian Plants, vol I. Botanical Survey of India, Calcutta

    Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mex Biodiver 79:205–216

    Google Scholar 

  • Pearson RG (2007) Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://ncep.amnh.org

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72

    Google Scholar 

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213(1):63–72

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, UK

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    CAS  PubMed  Google Scholar 

  • Ravindranath NH, Rao S, Sharma N, Nair M, Gopalakrishnan R, Rao AS, Malaviya S, Tiwari R, Sagadevan A, Munsi M, Krishna N, Bala G (2011) Climate change vulnerability profiles for North East India. Curr Sci 101(3):384–394

    Google Scholar 

  • Regnière J, Logan JA (2003) Animal life cycle models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic, London, UK

    Google Scholar 

  • Riutta T, Slade EM, Morecroft MD, Bebber DP, Malhi Y (2014) Living on the edge: quantifying the structure of a fragmented forest landscape in England. Landsc Ecol 29:949–961

    Google Scholar 

  • Riutta T, Clack H, Crockatt M, Slade EM (2016) Landscape-Scale implications of the edge effect on soil fauna activity in a temperate forest. Ecosystems 19:534–544

    Google Scholar 

  • Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86(1):56–62

    Google Scholar 

  • Sánchez-Cordero V, Illoldi-Rangel P, Linaje M, Sarkar S, Peterson AT (2005) Deforestation and extant distributions of Mexican endemic mammals. Biol Conserv 126(4):465–473

    Google Scholar 

  • Santamaria L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84(9):2454–2461

    Google Scholar 

  • Silva TR, Medeiros MB, Noronha SE, Pinto JRR (2017) Species distribution models of rare tree species as an evaluation tool for synergistic human impacts in the Amazon rainforest. Braz J Bot 40(4):963–971

    Google Scholar 

  • Soleimani K, Kordsavadkooh T, Muosavi SR (2008) The effect of environmental factors on vegetation changes using GIS (Case Study: Cherat Catchment, Iran). World Appl Sci J 3:95–100

    Google Scholar 

  • Sukumar R, Dattaraja HS, Suresh HS, Radhakrishnan J, Vasudeva R, Nirmala S, Joshi NV (1992) Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, Southern India. Curr Sci 62:608–616

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughs GO, Rouget M (2005a) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11(12):2234–2250

    Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005b) Climate change threats to plant diversity in Europe. Proc Nat Acad Sci USA 102:8245–8250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhaya K, Barik SK, Adhikari D, Baishya R, Lakadong NJ (2009) Regeneration ecology and population status of a critically endangered and endemic tree species (Ilex khasiana Purk.) in northeastern India. J for Res 20(3):223–228

    Google Scholar 

  • Upadhaya K, Mir AH, Iralu V (2017) Reproductive phenology and germination behavior of some important tree species of Northeast India. Proc Natl Acad Sci B Biol Sci 88(3):1033–1041

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENM Tools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611

    Google Scholar 

  • Wheeler L, Rivers MC (2015) Magnolia punduana. The IUCN Red List of Threatened Species. Version 2015.2. <www.iucnredlist.org>. Accessed 21 July 2015

  • Wilson CD, Roberts D, Reid N (2011) Applying species distribution modelling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.). Biol Conserv 144(2):821–829

    Google Scholar 

  • Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87

    CAS  Google Scholar 

  • Young A, Mitchell N (1994) Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol Conserv 67(1):63–72

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Headman and local people of various localities for their help and support during the field work. The first author acknowledges the financial support received from the University Grants Commission (U.G.C.) in the form of RGNF-JRF (F1-17.1/2013-14/RGNF-2013-14-ST-NAG-43868/ (SA-III/Website).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Upadhaya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iralu, V., Mir, A.H., Adhikari, D. et al. Complementing habitat distribution model with land use land cover for conservation of the rare and threatened tree Magnolia punduana Hk. f & Th. in northeast India. Landscape Ecol Eng 19, 617–632 (2023). https://doi.org/10.1007/s11355-023-00567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-023-00567-5

Keywords

Navigation