Skip to main content

Novel method for detection probability and estimating population size of mountain frog, Rana macrocnemis (Boulenger, 1885) at the end of its distribution range

Abstract

Local amphibian populations at the edge of a species range are possibly of greater conservation concern than any other amphibians group. They experience greater demographic fluctuation than populations at the core of the range. We detected the most suitable distribution range of R. macrocnemis by maximum entropy (MaxEnt) method at the end of the southeastern edge of natural distribution range to find out which environmental variables have a significant role in determining the distribution pattern of this species in marginal populations. According to the map constructed, three important variables had a high contribution to species presence as land cover (63.4%), annual precipitation (27%), and precipitation of coldest quarter of the year (5.4%) variables. Then, we described new methods for estimating detection probability for terrestrial frogs, specifically R. macrocnemis. Finally, we estimated the population size of mountain frogs by calculated detection probability. Our repeated capture–re-capture (RCR) results suggest that the estimated detection probability for R. macrocnemis is: \(\widehat{p} = 0.052\). Thus, the total average number of R. macrocnemis obtained from the 17 habitat sites is 982.5 adults (range: 708–1211 adults). In conclusion, the population estimates by detection probability index are generally much higher than densities reported for the Mountain frog populations than visual encounter estimation about 50.5 adults (range: 37–63 adults).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Afsar M, Afsar B, Arikan H (2015) Classification of the mountain frogs of the Berçelan Plateau (Hakkari), east Anatolia (Turkey) (Anura: Ranidae). Herpetozoa 28(1/2):15–27

    Google Scholar 

  2. Alford RA, Dixon PM, Pechmann JHK (2001) Global amphibian population declines. Nature 412:499–500

    CAS  PubMed  Article  Google Scholar 

  3. Allentoft ME, Brien JO (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71

    Article  Google Scholar 

  4. Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297

    Google Scholar 

  5. Araujo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  6. Bailey LL, Simons TR, Pollock KH (2004a) Estimating detection probability parameters for plethodon salamanders using the robust capture–recapture design. J Wildlife Manage 68:1–13

    Article  Google Scholar 

  7. Bailey LL, Simons TR, Pollock KH (2004b) Comparing population size estimators for plethodontid salamanders. J Herpetol 38:370–380

    Article  Google Scholar 

  8. Bernardes M, Rödder D, Nguyen TT, Pham CT, Nguyen TQ, Ziegler T (2013) Habitat characterization and potential distribution of Tylototriton vietnamensis in northern Vietnam. J Nat Hist 47:1161–1175

    Article  Google Scholar 

  9. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F (2008) Indicators for biodiversity in agricultural landscapes: a pan European study. J Appl Ecol 45:141–150

    Article  Google Scholar 

  10. Blaustein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608

    Article  Google Scholar 

  11. Blaustein AR, Susan CW, Betsy AB, Lawler JJ, Catherine LS, Stephanie SG (2010) Direct and indirect effects of climate change on amphibian populations. Diversity 2:281–313

    Article  Google Scholar 

  12. Carey C, Bryant CJ (1995) Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ Health Perspect 103:13–17

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Çiçek K (2011) Food composition of Uludağ frog, Rana macrocnemis Boulenger, 1885 in Uludağ (Bursa, Turkey). Acta Herpetol 6(1):87–99

    Google Scholar 

  14. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, New York, p 452

    Google Scholar 

  15. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol conserv 128(2):231–240

    Article  Google Scholar 

  16. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  17. Dodd CK, Dorazio RM (2004) Using counts to simultaneously estimate abundance and detection probabilities in a salamander community. Herpetologica 60:468–478

    Article  Google Scholar 

  18. Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park. Ghana. Molecular Ecol 12(6):1389–1402

    CAS  Article  Google Scholar 

  19. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  20. Frost DR (2016) Amphibian species of the world: an online reference. Version 6.0, Electronic database. American museum of natural history, New York, USA. https://research.amnh.org/herpetology/amphibia/index.html. Accessed Feb 2016

  21. Gibbs JP, Shriver WG (2005) Can road mortality limit populations of pool-breeding amphibians? Wetl Ecol Manag 13:281–289

    Article  Google Scholar 

  22. Gill DE (1985) Interpreting breeding patterns from census data: a solution to the Husting dilemma. Ecology 66:344–354

    Article  Google Scholar 

  23. Hels T, Buchwald E (2001) The effect of road kills on amphibian populations. Biol Conserv 99:331–340

    Article  Google Scholar 

  24. Hendrickx F, Maelfait JP, Wingerden W, Schweiger O, Billeter R, Speelmans M, Augenstein I, Aviron S, Bailey D, Bukacek R, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  25. Heyer WR, Donnelly MA, Mcdiarmid RW, Hayek LAC, Foster MS (1994) Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian Institution Press, Washington D C.

    Google Scholar 

  26. Hickey JR, Sollmann R (2018) A new mark-recapture approach for abundance estimation of social species. PLoS ONE 13(12):e0208726

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int Climatol 25:1965–1978

    Article  Google Scholar 

  28. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    CAS  PubMed  Article  Google Scholar 

  29. Hyde EJ, Simons TR (2001) Sampling plethodontid salamanders: sources of variability. J Wildlife Manag 65:624–632

    Article  Google Scholar 

  30. Iranian metrological organization (2019); www. Irimo.ir

  31. James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, Fisher MC, Berger L, Weldon C, du Preez L, Longcore JE (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5:e1000458

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110

    Article  Google Scholar 

  33. Ke´ry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecol 9:207–216

    Article  Google Scholar 

  34. Licht LE, Grant KP (1997) The effects of ultraviolet radiation on the biology of amphibians. Amer Zool 37:137–145

    CAS  Article  Google Scholar 

  35. Marco A, Quilchano C, Blaustein AR (1999) Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific northwest, USA. Environ Toxicol Chem 18:2836–2839

    CAS  Article  Google Scholar 

  36. Markazi province Metrological department (2017) https://markazimet.ir/dorsapax/userfiles/file/ordi96.pdf. Accessed July 2017

  37. McCrea RS, Morgan BJ (2014) Analysis of capture-recapture data. Chapman and Hall/CRC

  38. Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Biol 14:1991–2005

    CAS  Google Scholar 

  39. Najibzadeh M (2017) Taxonomy of brown frogs of the genus Rana (Linnaeus, 1758) (Anura: Ranidae) in Iran inferred from molecular and morphological data. PhD thesis, Razi University, Iran, In Persian

  40. Najibzadeh M, Gharzi A, Rastegar-Pouyani N, Rastegar-Pouyani E, Pesarakloo A (2017) Habitat suitability for the Caucasian frog Rana macrocnemis Boulenger, 1885 (Amphibia:Anura: Ranidae). Russ J ecol 48(3):280–286

    Article  Google Scholar 

  41. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  42. Phillips SJ, Dudik M (2008) Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  44. Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manage 46:757–760

    Article  Google Scholar 

  45. Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119

    Article  Google Scholar 

  46. Pullin A (2002) Conservation biology. Cambridge University Press, New York

    Book  Google Scholar 

  47. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    PubMed  Article  Google Scholar 

  48. Rödder D, Lötters S (2010) Potential distribution of the alien invasive Brown tree snake, Boiga irregularis (Reptilia: Colubridae). Pac Sci 64:11–22

    Article  Google Scholar 

  49. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TW, Veith M, Walker S, Fisher M, Lötters S (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66

    Article  Google Scholar 

  50. Roy J, Vigilant L, Gray M, Wright E, Kato R, Kabano P et al (2014) Challenges in the use of genetic mark recapture to estimate the population size of Bwindi mountain gorillas (Gorilla beringei beringei). Biolo Conserv 180:249–261

    Article  Google Scholar 

  51. Schmidt BR (2004) Declining amphibian populations: the pitfalls of count data in the study of diversity, distributions, dynamics and demography. Herpetol J 14:167–174

    Google Scholar 

  52. Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. MacMillan, New York

    Google Scholar 

  53. Storfer A, Eastman JM, Spear SF (2009) Modern Molecular Methods for Amphibian Conservation. BioScience 59 (7) 559 571.

    Article  Google Scholar 

  54. Stuart S, Chanson J, Cox N, Young B, Rodrigues A, Fischman D, Waller R (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    CAS  PubMed  Article  Google Scholar 

  55. Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE 6(12):e28244. https://doi.org/10.1371/journal.pone.0028244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Tarkhnishvili D, Hille A, Böhme W (2001) Humid forest refugia, speciation and secondary introgression between evolutionary lineages: differentiation in a Near Eastern brown frog, Rana macrocnemis. Biol J Linn Soc 74:141–156

    Article  Google Scholar 

  57. Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic Press, San Diego

    Google Scholar 

  58. Veith M, Kosuch J, Vences M (2003a) Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Anura, Ranidae). Mol Phylogenet Evol 26:310–327

    CAS  PubMed  Article  Google Scholar 

  59. Veith M, Schmidtler FJ, Kosuch J, Baran I, Seitz A (2003b) Paleoclimatic changes explain Anatolian mountain frogs: evolution: a test for alternating vicariance and dispersal events. Mol Ecol 12:185–199

    CAS  PubMed  Article  Google Scholar 

  60. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    CAS  PubMed  Article  Google Scholar 

  61. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci 105:11466–11473

    CAS  PubMed  Article  Google Scholar 

  62. Warkentin IG, Bickford D, Sodhi NS, Bradshaw CJA (2009) Eating frogs to extinction. Conserv Biol 23:1056–1059

    PubMed  Article  Google Scholar 

  63. Weyrauch SL, Grubb TC (2006) Effects of the interaction between genetic diversity and UV-B radiation on wood frog fitness. Biol Conserv 20:802–810

    Article  Google Scholar 

  64. White GC, Cooch EG (2017) Population abundance estimation with heterogeneous encounter probabilities using numerical integration. J Wildl Manag 81(2):322–336

    Article  Google Scholar 

  65. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

Download references

Acknowledgements

This research conducted in Markazi Province was funded by Arak University, Markazi, Iran (2017–2018/Grant Number 96.12586). The author would like to thank the Iranian Department of Environment for sampling authorization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Pesarakloo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pesarakloo, A., Najibzadeh, M. & Mirkamali, S.J. Novel method for detection probability and estimating population size of mountain frog, Rana macrocnemis (Boulenger, 1885) at the end of its distribution range. Landscape Ecol Eng 16, 11–21 (2020). https://doi.org/10.1007/s11355-019-00400-y

Download citation

Keywords

  • The mountain frog
  • Central iran
  • Habitat suitability
  • MaxEnt
  • Repeated capture–recapture (RCR)
  • Detection probability