Skip to main content

Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests

Abstract

Habitat fragmentation has become a major concern of conservation because of negative influences on plant species declines and extinctions. However, local extinction of species can occur with a temporal delay following habitat fragmentation, which is termed extinction debt. Many studies about extinction debt rely on community equilibrium from relationships between species richness and habitat variables. We assumed that the distribution of many vascular plant species in the coastal range of south-central Chile is not in equilibrium with the present habitat distribution. The aim of this research is to quantify patterns of habitat loss and to detect extinction debt from relationships between the current richness of different assemblages of vascular plants (considering longevity and habitat specialization) and both past and current habitat variables. The results showed that native forests have been fragmented and reduced by 53%, with an annual deforestation rate of 1.99%, in the study area between 1979 and 2011. Current richness of plant species was mostly explained by past habitat area and connectivity. Past habitat variables explained best richness of long-lived specialist plants, which are characterized by restricted habitat specialization and slower population turnover. We also showed that habitat fragmentation has resulted in a significant reduction in long-lived plant species’ “dwelling patch sizes (DPS)” between 1979 and 2011. Our analyses provide the first evidence of predicted future losses of plant species in a South American temperate biodiversity hotspot. Consequently, an unknown proportion of the plants in the study area will become extinct if no targeted restoration and conservation action is taken in the near future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133(2):212–224

    Article  Google Scholar 

  • Aguayo M, Pauchard A, Axocar G, Parra O (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo. XX. Entendiendo la dinámica espacial y temporal del paisaje. Rev Chil Hist Nat 82(3):361–374

    Article  Google Scholar 

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci 106(Supplement 1):9987–9994

    Article  PubMed  PubMed Central  Google Scholar 

  • Altamirano A, Aplin P, Miranda A, Cayuela L, Algar AC, Field R (2013) High rates of forest loss and turnover obscured by classical landscape measures. Appl Geogr 40:199–211

    Article  Google Scholar 

  • Armesto JJ, Villagran C, Arroyo MK (1996) Ecología de los bosques nativos de Chile. In: Armesto JJ, Villagran C, Arroyo MK (eds) Textos universitarios/monografias. Santiago Universitaria, Santiago

    Google Scholar 

  • Armesto J, Rozzi R, Smith-Ramírez C, Arroyo M (1998) Conservation targets in South American temperate forests. America 5:6

    Google Scholar 

  • Arrhenius O (1921) Species and area. J Ecol 9(1):95–99

    Article  Google Scholar 

  • Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manage 258(4):525–537

    Article  Google Scholar 

  • Bennett AF, Nature IUfCo, Resources N, Programme IFC (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, Gland

    Book  Google Scholar 

  • Bierzychudek P (1982) Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol 90(4):757–776

    Article  Google Scholar 

  • Braun AC, Vogt J (2014) A multiscale assessment of the risks imposed by plantation forestry on plant biodiversity in the hotspot central Chile. Open J Ecol 4(16):1025

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47(4):799–809

    Article  Google Scholar 

  • Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol Invasions 7(2):243–249

    Article  Google Scholar 

  • Carruthers D, Rodriguez P (2009) Mapuche protest, environmental conflict and social movement linkage in Chile. Third World Quart 30(4):743–760

    Article  Google Scholar 

  • Cavieres LA, Mihoc M, Marticorena A, Marticorena C, Mary CMBY, Arroyo K (2005) Flora vascular de la Cordillera de la Costa en la región del Biobío, vol 13: riqueza de especies, géneros, familias y endemismos

  • CBD Secretariat (2001) Global biodiversity outlook. UNEP, Nairobi

    Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3(11):432–438

    Article  Google Scholar 

  • CONAF (1999) Catastro y evaluación de los recursos vegetacionales nativos de Chile. Informe Nacional con Variables Ambientales, Santiago

    Google Scholar 

  • Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20(1):3–7

    Article  Google Scholar 

  • Cousins SAO, Vanhoenacker D (2011) Detection of extinction debt depends on scale and specialisation. Biol Conserv 144(2):782–787

    Article  Google Scholar 

  • Cousins SO, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landsc Ecol 22(5):723–730

    Article  Google Scholar 

  • Dambrine E, Ulrich E, Cénac N et al (1995) Atmospheric deposition in france and possible relation with forest decline. In: Landmann G, Bonneau M, Kaennel M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin, pp 177–200

    Chapter  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85(1):265–271

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117(4):507–514

    Article  Google Scholar 

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7(2):129–146

    Article  Google Scholar 

  • Donoso C (1993) Bosques templados de Chile y Argentina. Editorial Universitaria, Chile

  • Donoso C, Spurr S, Ambasht R et al (2006) Las especies arbóreas de los bosques templados de Chile y Argentina autoecología. Cartilla-Servicio Autónomo Forestal Venezolano (4)

  • Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2(8):619–622

    Article  Google Scholar 

  • Dullinger S, Essl F, Rabitsch W et al (2013) Europe’s other debt crisis caused by the long legacy of future extinctions. Proc Natl Acad Sci 110(18):7342–7347

    Article  PubMed  PubMed Central  Google Scholar 

  • Echeverria C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130(4):481–494

    Article  Google Scholar 

  • Echeverría C, Newton AC, Lara A, Benayas JMR, Coomes DA (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob Ecol Biogeogr 16(4):426–439

    Article  Google Scholar 

  • Echeverría C, Newton A, Nahuelhual L, Coomes D, Rey-Benayas JM (2012) How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl Geogr 32(2):822–831

    Article  Google Scholar 

  • Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124(1):63–73

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16(3):265–280

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • García D, Rodríguez-Cabal MA, Amico GC (2009) Seed dispersal by a frugivorous marsupial shapes the spatial scale of a mistletoe population. J Ecol 97(2):217–229

    Article  Google Scholar 

  • Gaston KJ, Spicer JI (2013) Biodiversity: an introduction. Wiley, New York

    Google Scholar 

  • Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. J Anim Ecol 579–601

  • Gilbert B, Levine JM (2013) Plant invasions and extinction debts. Proc Natl Acad Sci 110(5):1744–1749

    Article  PubMed  PubMed Central  Google Scholar 

  • González ME, Veblen TT (2006) Climatic influences on fire in Araucaria araucana-Nothofagus forests in the Andean Cordillera of south-central Chile. Ecoscience 13(3):342–350

    Article  Google Scholar 

  • Grace J, Tilman JGD (1990) Perspectives on plant competition: some introductory remarks. In: Perspectives on plant competition, pp 3–7

  • Gregory RD, Van Strien A, Vorisek P et al (2005) Developing indicators for European birds. Philos Trans R Soc Lond B Biol Sci 360(1454):269–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Grez AA, Smith-Ramírez C, Armesto J, Valdovinos C (2005) El valor de los fragmentos pequeños de bosque maulino en la conservación de la fauna de coleópteros epigeos. In: Historia, biodiversidad y ecología de los bosques de la Cordillera de la Costa, pp 565–572

  • Gustavsson E, Lennartsson T, Emanuelsson M (2007) Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol Conserv 138(1):47–59

    Article  Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12(2):321–334

    Google Scholar 

  • Hanski I (2000) Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. In: Ann Zool Fenn. JSTOR, pp 271–280

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16(3):666–673

    Article  Google Scholar 

  • Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 80(1):70–80

    Article  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9(1):72–77

    PubMed  Google Scholar 

  • Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica. I. Antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70(2):225–240

    Google Scholar 

  • Honnay O, Hermy M, Coppin P (1999) Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol Conserv 87(1):73–84

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • IUCN (2017) The IUCN Red List of Threatened Species. version 2017-3. http://www.iucnredlist.org. Accessed Mar 2017

  • Jamil T, Kruk C, ter Braak CJ (2014) A unimodal species response model relating traits to environment with application to phytoplankton communities. PloS one 9(5):e97583

  • Jamoneau A, Sonnier G, Chabrerie O et al (2011) Drivers of plant species assemblages in forest patches among contrasted dynamic agricultural landscapes. J Ecol 99(5):1152–1161

    Article  Google Scholar 

  • Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18(6):1571–1578

    Article  Google Scholar 

  • Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19(3):929–938

    Article  Google Scholar 

  • Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests—completely paid after 160 years? Biol Conserv 182:164–172

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13(5):597–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571

    Article  PubMed  Google Scholar 

  • Lara A, Araya L, Capella J, Fierro M, Cavieres A (1989) Evaluación de la destrucción y disponibilidad de los recursos forestales nativos en la VII y VIII Región. Informe Técnico, Comité Pro Defensa Fauna y Flora, Santiago

    Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16(3):605–618

    Article  Google Scholar 

  • Lenoir J, Gégout J, Marquet P, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Lesaffre E, Marx BD (1993) Collinearity in generalized linear regression. Commun Stat Theory Methods 22(7):1933–1952

    Article  Google Scholar 

  • Lienert J (2004) Habitat fragmentation effects on fitness of plant populations—a review. J Nat Conserv 12(1):53–72

    Article  Google Scholar 

  • Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95(3):555–564

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85(7):1840–1845

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, Washington, DC

    Google Scholar 

  • Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, Washington, DC

    Google Scholar 

  • López-Barrera F (2004) Estructura y función en bordes de bosques. Rev Ecosis 13(1):67–77

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  • Lusk CH, Pozo AD (2002) Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecol 27(2):173–182

    Article  Google Scholar 

  • Marchelli P, Smouse PE, Gallo LA (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.). Tree Genet Genomes 8(5):1123–1134

    Article  Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge–trends in space and successional time. J Ecol 82:113–123

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts. University of Massachusetts, Amherst. http://www.umass.edu/lan-deco/research/fragstats/fragstats.html

  • McKinney AM, Goodell K (2010) Shading by invasive shrub reduces seed production and pollinator services in a native herb. Biol Invasion 12(8):2751-2763

  • Mildén M, Cousins SA, Eriksson O (2007) The distribution of four grassland plant species in relation to landscape history in a Swedish rural area. In: Ann Bot Fenn. JSTOR, pp 416–426

  • Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37(1/2):17–23

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Nagendra H, Paul S, Pareeth S, Dutt S (2009) Landscapes of protection: forest change and fragmentation in Northern West Bengal, India. Environ Manage 44(5):853–864

    Article  PubMed  Google Scholar 

  • Öster M, Cousins SA, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18(6):859–868

    Article  Google Scholar 

  • Otavo S, Echeverría C (2017) Fragmentación progresiva y pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Rev Mex Biodivers 88(4):924–935

    Article  Google Scholar 

  • Ouborg N, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94(6):1233–1248

    Article  Google Scholar 

  • Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61(3):285–295

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Hanski I (2004) From individual behavior to metapopulation dynamics: unifying the patchy population and classic metapopulation models. Am Nat 164(3):364–377

    Article  PubMed  Google Scholar 

  • Owen E (2007) Informe final: una evaluacion rapida de la biodiversidad de dos predios integrados a la Red Conservacionista del Patrimonio Natural de Contulmo

  • Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci 97(22):12144–12148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paltto H, Nordén B, Götmark F, Franc N (2006) At which spatial and temporal scales does landscape context affect local density of Red Data Book and indicator species? Biol Conserv 133(4):442–454

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18(1):238–248

    Article  Google Scholar 

  • Piessens K, Hermy M (2006) Does the heathland flora in north-western Belgium show an extinction debt? Biol Conserv 132(3):382–394

    Article  Google Scholar 

  • Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biol Conserv 144(5):1619–1629

    Article  Google Scholar 

  • Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16(12):3423–3436

    Article  Google Scholar 

  • Puyravaud J-P (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manage 177(1):593–596

    Article  Google Scholar 

  • Ramirez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rainforest of Chiloe. Chile-ecologies and climatic constraints. J Ecol 82(2):353–365

    Google Scholar 

  • Ranius T, Eliasson P, Johansson P (2008) Large-scale occurrence patterns of Red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodivers Conserv 17(10):2371–2381

    Article  Google Scholar 

  • Reese H, Olsson H (2011) C-correction of optical satellite data over alpine vegetation areas: a comparison of sampling strategies for determining the empirical c-parameter. Remote Sens Environ 115(6):1387–1400

    Article  Google Scholar 

  • Reitalu T, Purschke O, Johansson LJ, Hall K, Sykes MT, Prentice HC (2012) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization. J Veg Sci 23(1):41–51

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L (2014) Space, time and complexity in plant dispersal ecology. Mov Ecol 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rouse JW Jr, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: 3rd ERTS symposium, NASA SP-351, Washington, DC, pp 309–317

  • Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143(6):1405–1413

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Schemske DW, Willson MF, Melampy MN et al (1978) Flowering ecology of some spring woodland herbs. Ecology 59(2):351–366

    Article  Google Scholar 

  • Sheil D, Burslem DF (2003) Disturbing hypotheses in tropical forests. Trends Ecol Evol 18(1):18–26

    Article  Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19(1):46–53

    Article  PubMed  Google Scholar 

  • Tambosi LR, Metzger JP (2013) A framework for setting local restoration priorities based on landscape context. Nat Conserv 11(2):152–157

    Article  Google Scholar 

  • Ter Braak CJ, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78(1):57–72

    Article  Google Scholar 

  • ter Braak CJ, Looman CW (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65(1):3–11

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371(6492):65–66

    Article  Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849

    Article  PubMed  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM et al (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29(3):299–307

    Article  Google Scholar 

  • Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87(3):542–548

    Article  PubMed  Google Scholar 

  • Vergara PM, Smith C, Delpiano CA, Orellana I, Gho D, Vazquez I (2010) Frugivory on Persea lingue in temperate Chilean forests: interactions between fruit availability and habitat fragmentation across multiple spatial scales. Oecologia 164(4):981–991

    Article  PubMed  Google Scholar 

  • Winfree R, Dushoff J, Crone EE et al (2005) Testing simple indices of habitat proximity. Am Nat 165(6):707–717

    Article  PubMed  Google Scholar 

  • Wolodarsky-Franke A, Herrera SD (2011) Cordillera de Nahuelbuta. Reserva mundial de biodiversidad. WWF, Valdivia

    Google Scholar 

  • Wulf M, Kolk J (2014) Plant species richness of very small forests related to patch configuration, quality, heterogeneity and history. J Veg Sci 25(5):1267–1277

    Article  Google Scholar 

  • Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was a part of Research project 1140531 of FONDECYT (Chilean National Fond for Scientific and Technological Development). JK Noh acknowledges funding support from KOICA (Korea International Cooperation Agency), KNA (Korea National Arboretum) and CONICYT (Chilean National Commission for Scientific and Technological Research). We are grateful to Roberto Rodriguez, Ph.D., for valuable support on botanical information, Rodrigo Fuentes, M.Sc., and Dr.(c) Samuel Otavo for Land cover classification and Felipe Sáez, M.Sc. for field data collection. The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-kyoung Noh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noh, Jk., Echeverría, C., Pauchard, A. et al. Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests. Landscape Ecol Eng 15, 1–12 (2019). https://doi.org/10.1007/s11355-018-0352-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-018-0352-3

Keywords

  • Habitat fragmentation
  • South American temperate hotspot
  • Plant species richness
  • Time-delayed extinction