Advertisement

Landscape and Ecological Engineering

, Volume 15, Issue 1, pp 1–12 | Cite as

Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests

  • Jin-kyoung NohEmail author
  • Cristian Echeverría
  • Aníbal Pauchard
  • Pablo Cuenca
Original Paper

Abstract

Habitat fragmentation has become a major concern of conservation because of negative influences on plant species declines and extinctions. However, local extinction of species can occur with a temporal delay following habitat fragmentation, which is termed extinction debt. Many studies about extinction debt rely on community equilibrium from relationships between species richness and habitat variables. We assumed that the distribution of many vascular plant species in the coastal range of south-central Chile is not in equilibrium with the present habitat distribution. The aim of this research is to quantify patterns of habitat loss and to detect extinction debt from relationships between the current richness of different assemblages of vascular plants (considering longevity and habitat specialization) and both past and current habitat variables. The results showed that native forests have been fragmented and reduced by 53%, with an annual deforestation rate of 1.99%, in the study area between 1979 and 2011. Current richness of plant species was mostly explained by past habitat area and connectivity. Past habitat variables explained best richness of long-lived specialist plants, which are characterized by restricted habitat specialization and slower population turnover. We also showed that habitat fragmentation has resulted in a significant reduction in long-lived plant species’ “dwelling patch sizes (DPS)” between 1979 and 2011. Our analyses provide the first evidence of predicted future losses of plant species in a South American temperate biodiversity hotspot. Consequently, an unknown proportion of the plants in the study area will become extinct if no targeted restoration and conservation action is taken in the near future.

Keywords

Habitat fragmentation South American temperate hotspot Plant species richness Time-delayed extinction 

Notes

Acknowledgements

This study was a part of Research project 1140531 of FONDECYT (Chilean National Fond for Scientific and Technological Development). JK Noh acknowledges funding support from KOICA (Korea International Cooperation Agency), KNA (Korea National Arboretum) and CONICYT (Chilean National Commission for Scientific and Technological Research). We are grateful to Roberto Rodriguez, Ph.D., for valuable support on botanical information, Rodrigo Fuentes, M.Sc., and Dr.(c) Samuel Otavo for Land cover classification and Felipe Sáez, M.Sc. for field data collection. The experiments comply with the current laws of the country in which they were performed.

Supplementary material

11355_2018_352_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 72 kb)

References

  1. Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133(2):212–224CrossRefGoogle Scholar
  2. Aguayo M, Pauchard A, Axocar G, Parra O (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo. XX. Entendiendo la dinámica espacial y temporal del paisaje. Rev Chil Hist Nat 82(3):361–374CrossRefGoogle Scholar
  3. Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc Natl Acad Sci 106(Supplement 1):9987–9994CrossRefPubMedGoogle Scholar
  4. Altamirano A, Aplin P, Miranda A, Cayuela L, Algar AC, Field R (2013) High rates of forest loss and turnover obscured by classical landscape measures. Appl Geogr 40:199–211CrossRefGoogle Scholar
  5. Armesto JJ, Villagran C, Arroyo MK (1996) Ecología de los bosques nativos de Chile. In: Armesto JJ, Villagran C, Arroyo MK (eds) Textos universitarios/monografias. Santiago Universitaria, SantiagoGoogle Scholar
  6. Armesto J, Rozzi R, Smith-Ramírez C, Arroyo M (1998) Conservation targets in South American temperate forests. America 5:6Google Scholar
  7. Arrhenius O (1921) Species and area. J Ecol 9(1):95–99CrossRefGoogle Scholar
  8. Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manage 258(4):525–537CrossRefGoogle Scholar
  9. Bennett AF, Nature IUfCo, Resources N, Programme IFC (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, GlandCrossRefGoogle Scholar
  10. Bierzychudek P (1982) Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol 90(4):757–776CrossRefGoogle Scholar
  11. Braun AC, Vogt J (2014) A multiscale assessment of the risks imposed by plantation forestry on plant biodiversity in the hotspot central Chile. Open J Ecol 4(16):1025CrossRefGoogle Scholar
  12. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47(4):799–809CrossRefGoogle Scholar
  13. Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol Invasions 7(2):243–249CrossRefGoogle Scholar
  14. Carruthers D, Rodriguez P (2009) Mapuche protest, environmental conflict and social movement linkage in Chile. Third World Quart 30(4):743–760CrossRefGoogle Scholar
  15. Cavieres LA, Mihoc M, Marticorena A, Marticorena C, Mary CMBY, Arroyo K (2005) Flora vascular de la Cordillera de la Costa en la región del Biobío, vol 13: riqueza de especies, géneros, familias y endemismosGoogle Scholar
  16. CBD Secretariat (2001) Global biodiversity outlook. UNEP, NairobiGoogle Scholar
  17. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903CrossRefGoogle Scholar
  18. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3(11):432–438CrossRefGoogle Scholar
  19. CONAF (1999) Catastro y evaluación de los recursos vegetacionales nativos de Chile. Informe Nacional con Variables Ambientales, SantiagoGoogle Scholar
  20. Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20(1):3–7CrossRefGoogle Scholar
  21. Cousins SAO, Vanhoenacker D (2011) Detection of extinction debt depends on scale and specialisation. Biol Conserv 144(2):782–787CrossRefGoogle Scholar
  22. Cousins SO, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landsc Ecol 22(5):723–730CrossRefGoogle Scholar
  23. Dambrine E, Ulrich E, Cénac N et al (1995) Atmospheric deposition in france and possible relation with forest decline. In: Landmann G, Bonneau M, Kaennel M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin, pp 177–200CrossRefGoogle Scholar
  24. Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85(1):265–271CrossRefGoogle Scholar
  25. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117(4):507–514CrossRefGoogle Scholar
  26. Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7(2):129–146CrossRefGoogle Scholar
  27. Donoso C (1993) Bosques templados de Chile y Argentina. Editorial Universitaria, ChileGoogle Scholar
  28. Donoso C, Spurr S, Ambasht R et al (2006) Las especies arbóreas de los bosques templados de Chile y Argentina autoecología. Cartilla-Servicio Autónomo Forestal Venezolano (4)Google Scholar
  29. Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2(8):619–622CrossRefGoogle Scholar
  30. Dullinger S, Essl F, Rabitsch W et al (2013) Europe’s other debt crisis caused by the long legacy of future extinctions. Proc Natl Acad Sci 110(18):7342–7347CrossRefPubMedGoogle Scholar
  31. Echeverria C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130(4):481–494CrossRefGoogle Scholar
  32. Echeverría C, Newton AC, Lara A, Benayas JMR, Coomes DA (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob Ecol Biogeogr 16(4):426–439CrossRefGoogle Scholar
  33. Echeverría C, Newton A, Nahuelhual L, Coomes D, Rey-Benayas JM (2012) How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl Geogr 32(2):822–831CrossRefGoogle Scholar
  34. Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124(1):63–73CrossRefGoogle Scholar
  35. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16(3):265–280CrossRefGoogle Scholar
  36. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  37. García D, Rodríguez-Cabal MA, Amico GC (2009) Seed dispersal by a frugivorous marsupial shapes the spatial scale of a mistletoe population. J Ecol 97(2):217–229CrossRefGoogle Scholar
  38. Gaston KJ, Spicer JI (2013) Biodiversity: an introduction. Wiley, New YorkGoogle Scholar
  39. Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. J Anim Ecol 579–601Google Scholar
  40. Gilbert B, Levine JM (2013) Plant invasions and extinction debts. Proc Natl Acad Sci 110(5):1744–1749CrossRefPubMedGoogle Scholar
  41. González ME, Veblen TT (2006) Climatic influences on fire in Araucaria araucana-Nothofagus forests in the Andean Cordillera of south-central Chile. Ecoscience 13(3):342–350CrossRefGoogle Scholar
  42. Grace J, Tilman JGD (1990) Perspectives on plant competition: some introductory remarks. In: Perspectives on plant competition, pp 3–7Google Scholar
  43. Gregory RD, Van Strien A, Vorisek P et al (2005) Developing indicators for European birds. Philos Trans R Soc Lond B Biol Sci 360(1454):269–288CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grez AA, Smith-Ramírez C, Armesto J, Valdovinos C (2005) El valor de los fragmentos pequeños de bosque maulino en la conservación de la fauna de coleópteros epigeos. In: Historia, biodiversidad y ecología de los bosques de la Cordillera de la Costa, pp 565–572Google Scholar
  45. Gustavsson E, Lennartsson T, Emanuelsson M (2007) Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol Conserv 138(1):47–59CrossRefGoogle Scholar
  46. Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12(2):321–334Google Scholar
  47. Hanski I (2000) Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. In: Ann Zool Fenn. JSTOR, pp 271–280Google Scholar
  48. Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16(3):666–673CrossRefGoogle Scholar
  49. Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 80(1):70–80CrossRefGoogle Scholar
  50. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9(1):72–77PubMedGoogle Scholar
  51. Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica. I. Antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70(2):225–240Google Scholar
  52. Honnay O, Hermy M, Coppin P (1999) Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol Conserv 87(1):73–84CrossRefGoogle Scholar
  53. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309CrossRefGoogle Scholar
  54. IUCN (2017) The IUCN Red List of Threatened Species. version 2017-3. http://www.iucnredlist.org. Accessed Mar 2017
  55. Jamil T, Kruk C, ter Braak CJ (2014) A unimodal species response model relating traits to environment with application to phytoplankton communities. PloS one 9(5):e97583Google Scholar
  56. Jamoneau A, Sonnier G, Chabrerie O et al (2011) Drivers of plant species assemblages in forest patches among contrasted dynamic agricultural landscapes. J Ecol 99(5):1152–1161CrossRefGoogle Scholar
  57. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18(6):1571–1578CrossRefGoogle Scholar
  58. Kolb A, Diekmann M (2005) Effects of life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19(3):929–938CrossRefGoogle Scholar
  59. Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests—completely paid after 160 years? Biol Conserv 182:164–172CrossRefGoogle Scholar
  60. Krauss J, Bommarco R, Guardiola M et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13(5):597–605CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571CrossRefPubMedGoogle Scholar
  62. Lara A, Araya L, Capella J, Fierro M, Cavieres A (1989) Evaluación de la destrucción y disponibilidad de los recursos forestales nativos en la VII y VIII Región. Informe Técnico, Comité Pro Defensa Fauna y Flora, SantiagoGoogle Scholar
  63. Laurance WF, Lovejoy TE, Vasconcelos HL et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16(3):605–618CrossRefGoogle Scholar
  64. Lenoir J, Gégout J, Marquet P, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771CrossRefPubMedGoogle Scholar
  65. Lesaffre E, Marx BD (1993) Collinearity in generalized linear regression. Commun Stat Theory Methods 22(7):1933–1952CrossRefGoogle Scholar
  66. Lienert J (2004) Habitat fragmentation effects on fitness of plant populations—a review. J Nat Conserv 12(1):53–72CrossRefGoogle Scholar
  67. Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95(3):555–564CrossRefGoogle Scholar
  68. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85(7):1840–1845CrossRefGoogle Scholar
  69. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, Washington, DCGoogle Scholar
  70. Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, Washington, DCGoogle Scholar
  71. López-Barrera F (2004) Estructura y función en bordes de bosques. Rev Ecosis 13(1):67–77Google Scholar
  72. Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808CrossRefPubMedPubMedCentralGoogle Scholar
  73. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  74. Lusk CH, Pozo AD (2002) Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: gas exchange and biomass distribution correlates. Austral Ecol 27(2):173–182CrossRefGoogle Scholar
  75. Marchelli P, Smouse PE, Gallo LA (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.). Tree Genet Genomes 8(5):1123–1134CrossRefGoogle Scholar
  76. Matlack GR (1994) Vegetation dynamics of the forest edge–trends in space and successional time. J Ecol 82:113–123CrossRefGoogle Scholar
  77. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts. University of Massachusetts, Amherst. http://www.umass.edu/lan-deco/research/fragstats/fragstats.html
  78. McKinney AM, Goodell K (2010) Shading by invasive shrub reduces seed production and pollinator services in a native herb. Biol Invasion 12(8):2751-2763Google Scholar
  79. Mildén M, Cousins SA, Eriksson O (2007) The distribution of four grassland plant species in relation to landscape history in a Swedish rural area. In: Ann Bot Fenn. JSTOR, pp 416–426Google Scholar
  80. Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37(1/2):17–23CrossRefPubMedGoogle Scholar
  81. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefPubMedGoogle Scholar
  82. Nagendra H, Paul S, Pareeth S, Dutt S (2009) Landscapes of protection: forest change and fragmentation in Northern West Bengal, India. Environ Manage 44(5):853–864CrossRefPubMedGoogle Scholar
  83. Öster M, Cousins SA, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18(6):859–868CrossRefGoogle Scholar
  84. Otavo S, Echeverría C (2017) Fragmentación progresiva y pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Rev Mex Biodivers 88(4):924–935CrossRefGoogle Scholar
  85. Ouborg N, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94(6):1233–1248CrossRefGoogle Scholar
  86. Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61(3):285–295CrossRefPubMedGoogle Scholar
  87. Ovaskainen O, Hanski I (2004) From individual behavior to metapopulation dynamics: unifying the patchy population and classic metapopulation models. Am Nat 164(3):364–377CrossRefPubMedGoogle Scholar
  88. Owen E (2007) Informe final: una evaluacion rapida de la biodiversidad de dos predios integrados a la Red Conservacionista del Patrimonio Natural de ContulmoGoogle Scholar
  89. Owens IP, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci 97(22):12144–12148CrossRefPubMedGoogle Scholar
  90. Paltto H, Nordén B, Götmark F, Franc N (2006) At which spatial and temporal scales does landscape context affect local density of Red Data Book and indicator species? Biol Conserv 133(4):442–454CrossRefGoogle Scholar
  91. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18(1):238–248CrossRefGoogle Scholar
  92. Piessens K, Hermy M (2006) Does the heathland flora in north-western Belgium show an extinction debt? Biol Conserv 132(3):382–394CrossRefGoogle Scholar
  93. Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biol Conserv 144(5):1619–1629CrossRefGoogle Scholar
  94. Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16(12):3423–3436CrossRefGoogle Scholar
  95. Puyravaud J-P (2003) Standardizing the calculation of the annual rate of deforestation. For Ecol Manage 177(1):593–596CrossRefGoogle Scholar
  96. Ramirez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rainforest of Chiloe. Chile-ecologies and climatic constraints. J Ecol 82(2):353–365Google Scholar
  97. Ranius T, Eliasson P, Johansson P (2008) Large-scale occurrence patterns of Red-listed lichens and fungi on old oaks are influenced both by current and historical habitat density. Biodivers Conserv 17(10):2371–2381CrossRefGoogle Scholar
  98. Reese H, Olsson H (2011) C-correction of optical satellite data over alpine vegetation areas: a comparison of sampling strategies for determining the empirical c-parameter. Remote Sens Environ 115(6):1387–1400CrossRefGoogle Scholar
  99. Reitalu T, Purschke O, Johansson LJ, Hall K, Sykes MT, Prentice HC (2012) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization. J Veg Sci 23(1):41–51CrossRefGoogle Scholar
  100. Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L (2014) Space, time and complexity in plant dispersal ecology. Mov Ecol 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  101. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  102. Rouse JW Jr, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: 3rd ERTS symposium, NASA SP-351, Washington, DC, pp 309–317Google Scholar
  103. Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143(6):1405–1413CrossRefGoogle Scholar
  104. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32CrossRefGoogle Scholar
  105. Schemske DW, Willson MF, Melampy MN et al (1978) Flowering ecology of some spring woodland herbs. Ecology 59(2):351–366CrossRefGoogle Scholar
  106. Sheil D, Burslem DF (2003) Disturbing hypotheses in tropical forests. Trends Ecol Evol 18(1):18–26CrossRefGoogle Scholar
  107. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19(1):46–53CrossRefPubMedGoogle Scholar
  108. Tambosi LR, Metzger JP (2013) A framework for setting local restoration priorities based on landscape context. Nat Conserv 11(2):152–157CrossRefGoogle Scholar
  109. Ter Braak CJ, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78(1):57–72CrossRefGoogle Scholar
  110. ter Braak CJ, Looman CW (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65(1):3–11CrossRefGoogle Scholar
  111. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371(6492):65–66CrossRefGoogle Scholar
  112. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849CrossRefPubMedGoogle Scholar
  113. Valiente-Banuet A, Aizen MA, Alcántara JM et al (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29(3):299–307CrossRefGoogle Scholar
  114. Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87(3):542–548CrossRefPubMedGoogle Scholar
  115. Vergara PM, Smith C, Delpiano CA, Orellana I, Gho D, Vazquez I (2010) Frugivory on Persea lingue in temperate Chilean forests: interactions between fruit availability and habitat fragmentation across multiple spatial scales. Oecologia 164(4):981–991CrossRefPubMedGoogle Scholar
  116. Winfree R, Dushoff J, Crone EE et al (2005) Testing simple indices of habitat proximity. Am Nat 165(6):707–717CrossRefPubMedGoogle Scholar
  117. Wolodarsky-Franke A, Herrera SD (2011) Cordillera de Nahuelbuta. Reserva mundial de biodiversidad. WWF, ValdiviaGoogle Scholar
  118. Wulf M, Kolk J (2014) Plant species richness of very small forests related to patch configuration, quality, heterogeneity and history. J Veg Sci 25(5):1267–1277CrossRefGoogle Scholar
  119. Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  120. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418CrossRefPubMedGoogle Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Ecología de Paisaje, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Laboratorio de Invasiones Biológicas, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  3. 3.Laboratorio de Cambio GlobalUniversidad Regional Amazónica IkiamTenaEcuador

Personalised recommendations