Advertisement

Landscape and Ecological Engineering

, Volume 13, Issue 1, pp 33–44 | Cite as

Phylogeography of ten native herbaceous species in the temperate region of Japan: implication for the establishment of seed transfer zones for revegetation materials

  • Motoshi TomitaEmail author
  • Soh Kobayashi
  • Seiya Abe
  • Takaaki Hanai
  • Kaori Kawazu
  • Sonoko Tsuda
Original Paper

Abstract

Revegetation using native species requires the development of seed transfer zones that capture genetic distinctiveness and adaptive potentials while avoiding potential maladaptation and genetic contamination by exotic genotypes. Delineation based on phylogeographic information has recently been used to establish seed transfer zones; however, only a few herbaceous species that are suitable for revegetation have been investigated in the temperate regions of Japan. We investigated the phylogeography of non-coding regions of chloroplast DNA of ten native species in the temperate regions of Japan. Although no species showed clear-cut geographical distributions of the 2–14 haplotypes identified, spatially constrained Bayesian clustering showed two clusters in five species (Calamagrostis epigejos, Eragrostis ferruginea, Imperata cylindrica, Microstegium japonicum, and Microstegium vimineum) but not for others. Posterior modes of clusters for I. cylindrica and M. vimineum showed delineations at Chubu (the middle of Honshu Island), which divide the study region into northeastern and southwestern regions, indicating that these species had recovered from glacial refugia. Posterior mode of cluster for E. ferruginea showed that one consists of a coastal zone along the Pacific Ocean side of western Japan, while the other consists of the remaining area, indicating range expansion from south coast to north. Delineation of C. epigejos and M. japonicum were unclear. The mixed results indicated that establishing seed transfer zones for herbaceous species in Japan will require phylogeographical studies on a wide range of species that may be suitable for revegetation.

Keywords

Bayesian clustering Chloroplast DNA Ecological restoration Genetic contamination Seed sowing 

Notes

Acknowledgments

We thank Rikyu Matsuki and Chinami Ishiyama for their assistance in field sampling and laboratory works. We are also grateful to two anonymous reviewers for comments on previous versions of the manuscript. The study was funded by an in-house budget of the Central Research Institute of Electric Power Industry and Chubu Electric Power. All the experiments comply with the current laws of Japan.

Supplementary material

11355_2016_297_MOESM1_ESM.png (309 kb)
Supplementary material 1 (PNG 308 kb)
11355_2016_297_MOESM2_ESM.png (460 kb)
Supplementary material 2 (PNG 459 kb)
11355_2016_297_MOESM3_ESM.png (454 kb)
Supplementary material 3 (PNG 453 kb)
11355_2016_297_MOESM4_ESM.png (964 kb)
Supplementary material 4 (PNG 964 kb)
11355_2016_297_MOESM5_ESM.png (793 kb)
Supplementary material 5 (PNG 793 kb)
11355_2016_297_MOESM6_ESM.png (1 mb)
Supplementary material 6 (PNG 1031 kb)
11355_2016_297_MOESM7_ESM.png (993 kb)
Supplementary material 7 (PNG 992 kb)
11355_2016_297_MOESM8_ESM.png (1 mb)
Supplementary material 8 (PNG 1026 kb)
11355_2016_297_MOESM9_ESM.xlsx (52 kb)
Supplementary material 9 (XLSX 52 kb)

References

  1. Aavik T, Edwards PJ, Holderegger R et al (2012) Genetic consequences of using seed mixtures in restoration: a case study of a wetland plant Lychnis flos-cuculi. Biol Conserv 145:195–204. doi: 10.1016/j.biocon.2011.11.004 CrossRefGoogle Scholar
  2. Azpilicueta MM, Gallo LA, van Zonneveld M et al (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manage 302:414–424. doi: 10.1016/j.foreco.2013.03.037 CrossRefGoogle Scholar
  3. Bradley St Clair J, Kilkenny FF, Johnson RC et al (2013) Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States. Evol Appl 6:933–948. doi: 10.1111/eva.12077 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bucci G, González-Martínez SC, Le Provost G et al (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol Ecol 16:2137–2153. doi: 10.1111/j.1365-294X.2007.03275.x CrossRefPubMedGoogle Scholar
  5. Clark LV, Stewart JR, Nishiwaki A et al (2015) Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. J Exp Bot. doi: 10.1093/jxb/eru511 Google Scholar
  6. Dray S, Dufour A-B, Thioulouse J (2015) Ade4: analysis of ecological data: exploratory and euclidean methods in environmental sciences. Available at: http://cran.r-project.org/package=ade4. Accessed 7 June 2016
  7. Dvořáková H, Fér T, Marhold K (2010) Phylogeographic pattern of the European forest grass species Hordelymus europaeus: cpDNA evidence. Flora—Morphol Distrib Funct Ecol Plants 205:418–423. doi: 10.1016/j.flora.2009.12.029 CrossRefGoogle Scholar
  8. Environmental Agency of Japan (1997) The national land division for biodiversity conservation. Environmental Agency of Japan, Tokyo (In Japanese) Google Scholar
  9. Escudero M, Vargas P, Valcárcel V, Luceño M (2008) Strait of Gibraltar: an effective gene-flow barrier for wind-pollinated Carex helodes (Cyperaceae) as revealed by DNA sequences, AFLP, and cytogenetic variation. Am J Bot 95:745–755. doi: 10.3732/ajb.2007342 CrossRefPubMedGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  11. Fujii N (2007) Chloroplast DNA phylogeography of Pedicularis ser. Gloriosae (Orobanchaceae) in Japan. J Plant Res 120:491–500. doi: 10.1007/s10265-007-0083-2 CrossRefPubMedGoogle Scholar
  12. Fujii N, Tomaru N, Okuyama K et al (2002) Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Syst Evol 232:21–33. doi: 10.1007/s006060200024 CrossRefGoogle Scholar
  13. Guillot G, Renaud S, Ledevin R et al (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911. doi: 10.1093/sysbio/sys038 CrossRefPubMedGoogle Scholar
  14. Hall T (2013) BioEdit v7.2.5: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Available at: http://www.mbio.ncsu.edu/bioedit/bioedit.html. Accessed 7 June 2016
  15. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  16. Hayakawa H, Aakasaka M, Shimono Y et al (2014) Phylogeography based on the nuclear ribosomal DNA internal transcribed spacer region of native Miscanthus sinensis (Poaceae) populations in Japan. Weed Biol Manag 14:251–261CrossRefGoogle Scholar
  17. Herget ME, Hufford KM, Mummey DL, Shreading LN (2015) Consequences of seed origin and biological invasion for early establishment in restoration of a North American grass species. PLoS One 10:e0119889. doi: 10.1371/journal.pone.0119889 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Iwasaki T, Aoki K, Seo A (2012) Comparative phylogeography of four component species of deciduous broad-leaved forests in Japan based on chloroplast DNA variation. doi:  10.1007/s10265-011-0428-8
  19. Johnson LMK, Galloway LF (2008) From horticultural plantings into wild populations: movement of pollen and genes in Lobelia cardinalis. Plant Ecol 197:55–67. doi: 10.1007/s11258-007-9359-9 CrossRefGoogle Scholar
  20. Johnson R, Hellier B, Vance-Borland K (2013) Genecology and seed zones for tapertip onion in the US great Basin. Botany 91:686–694CrossRefGoogle Scholar
  21. Kira T (1977) A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tüxen R (eds) Vegetation science and environmental protection. Maruzen, Tokyo, pp 21–30Google Scholar
  22. Kramer AT, Larkin DJ, Fant JB (2015) Assessing potential seed transfer zones for five Forb species from the Great Basin Floristic Region, USA. Nat Areas J 35:174–188CrossRefGoogle Scholar
  23. Loveless M, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95. doi: 10.1146/annurev.ecolsys.15.1.65 CrossRefGoogle Scholar
  24. Maekawa F (1943) Prehistoric-naturalized plants to Japan proper. Acta Phytotaxo Geobot 13:274–279 (In Japanese) Google Scholar
  25. Matsumura M, Yukimura T (1980) The comparative ecology of intraspecific variants of the Chigaya, Imperata cylindrica var, koenigii (Alang-alang). (1) Habitats of the common and early flowering types of the Chigaya based on the vegetation characteristics. Res Bull Fac Agr Gifu Univ 43:233–248 (In Japanese) Google Scholar
  26. McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440. doi: 10.1111/j.1526-100X.2005.00058.x CrossRefGoogle Scholar
  27. Michalski SG, Durka W, Jentsch A et al (2010) Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theor Appl Genet 120:1151–1162. doi: 10.1007/s00122-009-1242-8 CrossRefPubMedGoogle Scholar
  28. Mizuguti et al (2004) Genetic difference between two types of Imperate cylindrica (L.) Beauv. characterized by flowering phenology. Grassl Sci 50:9–14Google Scholar
  29. Nomura Y, Shimono Y, Tominaga T (2015) Development of chloroplast DNA markers in Japanese imperata cylindrica. Weed Res 55:329–333. doi: 10.1111/wre.12149 CrossRefGoogle Scholar
  30. Ohsawa T, Ide Y (2011) Phylogeographic patterns of highland and lowland plant species in Japan. Alp Bot 121:49–61. doi: 10.1007/s00035-010-0083-z CrossRefGoogle Scholar
  31. Osada T (1989) Illustrated grasses of Japan. Heibonsha, Tokyo (In Japanese) Google Scholar
  32. Paradis E, Jombart T, Schliep K et al (2015) Pegas: population and evolutionary genetics analysis system. Available at: http://cran.r-project.org/package=pegas. Accessed 7 June 2016
  33. Petit RJ, Aguinagalde I, de Beaulieu J-L et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565. doi: 10.1126/science.1083264 CrossRefPubMedGoogle Scholar
  34. Petit RJ, Duminil D, Fineschi S et al (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi: 10.1111/j.1365-294X.2004.02410.x CrossRefPubMedGoogle Scholar
  35. Plummer M, Best N, Cowles K et al (2015) Coda: output analysis and diagnostics for MCMC. Available at: http://cran.r-project.org/package=coda. Accessed 7 June 2016
  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi: 10.1111/j.1471-8286.2007.01758.x PubMedPubMedCentralGoogle Scholar
  37. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 7 June 2016
  38. Rejzková E, Fér T, Vojta J, Marhold K (2008) Phylogeography of the forest herb Carex pilosa (Cyperaceae). Bot J Linn Soc 158:115–130. doi: 10.1111/j.1095-8339.2008.00826.x CrossRefGoogle Scholar
  39. Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449. doi: 10.1073/pnas.032477999 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Scarcelli N, Barnaud A, Eiserhardt W et al (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS One 6:e19954. doi: 10.1371/journal.pone.0019954 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Severns PM, Bradford E, Liston A (2013) Whole genome duplication in a threatened grassland plant and the efficacy of seed transfer zones. Divers Distrib 19:455–464. doi: 10.1111/ddi.12004 Google Scholar
  42. Shimono Y, Hayakawa H, Kurokawa S et al (2013a) Phylogeography of mugwort (Artemisia indica), a native pioneer herb in Japan. J Hered 104:830–841. doi: 10.1093/jhered/est054 CrossRefPubMedGoogle Scholar
  43. Shimono Y, Kurokawa S, Nishida T et al (2013b) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91:449–456. doi: 10.1139/cjb-2012-0212 CrossRefGoogle Scholar
  44. Sutkowska A, Pasierbiński A, Warzecha T, Mitka J (2014) Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst Evol 300:1437–1452. doi: 10.1007/s00606-013-0972-x CrossRefGoogle Scholar
  45. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi: 10.1007/BF00037152 CrossRefPubMedGoogle Scholar
  46. The Geneland Development Group (2012) Population genetic and morphometric data analysis using R and the Geneland program. Available at: http://cran.r-project.org/package=Geneland. Accessed 7 June 2016
  47. Tominaga T, Kobayashi H, Ueki K (1990) Adaptive differentiation to local populations of Imperata cylindrica in Japan. J Trop Agric 34:250–254Google Scholar
  48. Tsuda S, Kobayashi S, Tomita M et al (2014) Phylogeographic study of 10 herbaceous plants native in Japan based on intraspecific chloroplast DNA variation. J Jpn Soc Reveg Technol 40:72–77 (In Japanese) CrossRefGoogle Scholar
  49. Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311CrossRefGoogle Scholar
  50. Wilson B, Darris D, Fiegener R (2008) Seed transfer zones for a native grass Festuca roemeri: genecological evidence. Nativ Plants 9:287–302CrossRefGoogle Scholar
  51. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058. doi: 10.1073/pnas.84.24.9054 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yasuda K, Shibayama H (2003) Geographical distribution of chloroplast DNA variation of cogongrass (Imperata cylinfrica) in Japan. Coast Environ 2:51–58 (In Japanese) Google Scholar

Copyright information

© International Consortium of Landscape and Ecological Engineering and Springer Japan 2016

Authors and Affiliations

  1. 1.Environmental Science Research LaboratoryCentral Research Institute of Electric Power IndustryAbikoJapan
  2. 2.Techno Chubu Co., Ltd.NagoyaJapan
  3. 3.Energy Applications R&D CenterChubu Electric Power Co., Inc.NagoyaJapan

Personalised recommendations