Skip to main content
Log in

An Improved Test Procedure for Mechanical Characterization of Flax-Epoxy Composites

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

An accurate measure of mechanical properties is essential for developing constitutive models in composites. However, existing methods for the characterization of flax-epoxy composites have few shortcomings such as a) under prediction of the strength due to premature failure of parallel tensile specimens near the jaw grips b) inability to capture complete stress-strain response under compressive loading, particularly the post-peak behavior due to strain gauge failure near pre-ultimate load c) local bearing failures and undesirable twist which fails to simulate the desired state of shear in the specimen.

Objective

The paper aims to present an improved test procedure for characterizing flax-epoxy composites using full-field strain measurement under tensile, compressive and shear loading.

Methods

A simpler dog-bone tensile specimen without end tabs instead of the parallel specimens with end tabs as per ASTM standard is proposed. The improved strain measurement technique captures the complete stress-strain response under compressive loading with a single camera (2D-Digital Image Correlation (DIC)) and does not demand any modifications to the Combined Loading Compression (CLC) fixture. The V-Notched rail shear test fixture simulates the desired stress state that is free from local bearing failure/twisting.

Results

The proposed test methodology simulates the desired failure modes and stress-strain response. The results show that flax-epoxy composites exhibit significant anisotropy and nonlinearity with different failure strengths in both fiber and matrix directions for different loading cases.

Conclusions

The proposed test procedure accurately characterizes the mechanical properties of flax-epoxy composites under different loading conditions and can be used for standardizing the test methodology for natural fiber composites using full-field strain measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data and Code Availability

Not Applicable.

References

  1. Zheng H, Zhang W, Li B et al (2022) Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos B Eng 233:109639. https://doi.org/10.1016/j.compositesb.2022.109639

  2. Directive 2000/53/EC of the European Parliament and of the Council on end-of life vehicles. | UNEP Law and Environment Assistance Platform. https://leap.unep.org/countries/eu/national-legislation/directive-200053ec-european-parliament-and-council-end-life. Accessed 1 Mar 2023

  3. Konz RJ (2009) The end-of-life vehicle (ELV) directive: the road to responsible disposal. Minn J Int Law 85. https://scholarship.law.umn.edu/mjil/85

  4. Kulma A, Skórkowska-Telichowska K, Kostyn K et al (2015) New flax producing bioplastic fibers for medical purposes. Ind Crops Prod 68:80–89. https://doi.org/10.1016/j.indcrop.2014.09.013

    Article  Google Scholar 

  5. Park G, Park H (2018) Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Compos Struct 184:800–806. https://doi.org/10.1016/j.compstruct.2017.10.068

    Article  Google Scholar 

  6. Jayan JS, Appukuttan S, Wilson R et al (2021) An introduction to fiber reinforced composite materials. Fiber reinforced composites. Elsevier, pp 1–24. https://doi.org/10.1016/B978-0-12-821090-1.00025-9

    Chapter  Google Scholar 

  7. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Market Res 8:6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068

    Article  Google Scholar 

  8. Natural Fiber Reinforced Composites Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027). New York. https://www.reportlinker.com/p06241287/Natural-Fiber-Reinforced-Composites-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html?utm_source=GNW. Accessed 1 Mar 2023

  9. Richely E, Bourmaud A, Placet V et al (2022) A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects. Prog Mater Sci 124:100851. https://doi.org/10.1016/j.pmatsci.2021.100851

  10. Duc F, Bourban PE, Plummer CJG, Månson JAE (2014) Damping of thermoset and thermoplastic flax fibre composites. Compos Part A Appl Sci Manuf 64:115–123. https://doi.org/10.1016/J.COMPOSITESA.2014.04.016

    Article  Google Scholar 

  11. Cloots E (2014) Influence of the temperature during the service life of chemically treated flax fibre composites. Master thesis KU Leuven, Faculty of Engineering Technology, Campus Group T

  12. Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A Appl Sci Manuf 32:1105–1115. https://doi.org/10.1016/S1359-835X(01)00032-X

    Article  Google Scholar 

  13. Thuault A, Eve S, Blond D et al (2013) Effects of the hygrothermal environment on the mechanical properties of flax fibres. J Compos Mater 48:1699–1707. https://doi.org/10.1177/0021998313490217

    Article  Google Scholar 

  14. Vanleeuw B, Carvelli V, Barburski M et al (2015) Quasi-unidirectional flax composite reinforcement: Deformability and complex shape forming. Compos Sci Technol 110:76–86. https://doi.org/10.1016/j.compscitech.2015.01.024

    Article  Google Scholar 

  15. Baley C, Lan M, Bourmaud A, le Duigou A (2018) Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction. Mater Today Commun 16:300–306. https://doi.org/10.1016/J.MTCOmm.2018.07.003

    Article  Google Scholar 

  16. De Bruyne NA (1939) Plastic progress - Some further developments in the manufacture and use of synthetic materials for aircraft construction. Flight Aircr Eng 12:77–79. https://scholar.google.com/scholar_lookup?journal=Flight+Aircr.+Eng.&title=Plastic+progress+-+Some+further+developments+in+the+manufacture+and+use+of+synthetic+materials+for+aircraft+construction.&author=N.+A.+de+Bruyne&volume=12&publication_year=1939&pages=77-79&

    Google Scholar 

  17. Baley C, Perrot Y, Busnel F et al (2006) Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater Lett 60:2984–2987. https://doi.org/10.1016/j.matlet.2006.02.028

    Article  Google Scholar 

  18. Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42:2499–2511. https://doi.org/10.1007/s10853-006-1027-2

    Article  Google Scholar 

  19. Charlet K, Jernot JP, Gomina M et al (2010) Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites. J Compos Mater 44:2887–2896. https://doi.org/10.1177/0021998310369579

    Article  Google Scholar 

  20. Shah DU, Schubel PJ, Licence P, Clifford MJ (2012) Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos Sci Technol 72:1909–1917. https://doi.org/10.1016/j.compscitech.2012.08.005

    Article  Google Scholar 

  21. Shah DU (2016) Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos Part A Appl Sci Manuf 83:160–168. https://doi.org/10.1016/J.COMPOSITESA.2015.09.008

    Article  Google Scholar 

  22. Giuliani PM, Giannini O, Panciroli R (2022) Characterizing flax fiber reinforced bio-composites under monotonic and cyclic tensile loading. Compos Struct 280:114803. https://doi.org/10.1016/j.compstruct.2021.114803

  23. Coroller G, Lefeuvre A, Le Duigou A et al (2013) Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos Part A Appl Sci Manuf 51:62–70. https://doi.org/10.1016/j.compositesa.2013.03.018

    Article  Google Scholar 

  24. Baets J, Plastria D, Ivens J, Verpoest I (2014) Determination of the optimal flax fibre preparation for use in unidirectional flax–epoxy composites. J Reinf Plast Compos 33:493–502. https://doi.org/10.1177/0731684413518620

    Article  Google Scholar 

  25. Bozaci E, Sever K, Sarikanat M et al (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos B Eng 45:565–572. https://doi.org/10.1016/J.COMPOSITESB.2012.09.042

    Article  Google Scholar 

  26. Rayyaan R, Kennon WR, Potluri P, Akonda M (2019) Fibre architecture modification to improve the tensile properties of flax-reinforced composites. J Compos Mater 54:379–395. https://doi.org/10.1177/0021998319863156

    Article  Google Scholar 

  27. Marrot L, Bourmaud A, Bono P, Baley C (2014) Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Mater Des 1980–2015(62):47–56. https://doi.org/10.1016/J.MATDES.2014.04.087

    Article  Google Scholar 

  28. Arbelaiz A, Fernández B, Cantero G et al (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos Part A Appl Sci Manuf 36:1637–1644. https://doi.org/10.1016/J.COMPOSITESA.2005.03.021

    Article  Google Scholar 

  29. Audibert C, Andreani AS, Lainé É, Grandidier JC (2018) Mechanical characterization and damage mechanism of a new flax-Kevlar hybrid/epoxy composite. Compos Struct 195:126–135. https://doi.org/10.1016/J.COMPSTRUCT.2018.04.061

    Article  Google Scholar 

  30. Poilâne C, Cherif ZE, Richard F et al (2014) Polymer reinforced by flax fibres as a viscoelastoplastic material. Compos Struct 112:100–112. https://doi.org/10.1016/J.COMPSTRUCT.2014.01.043

    Article  Google Scholar 

  31. Giuliani PM, Giannini O, Panciroli R (2020) Visco-elasto-plastic experimental characterization of flax-based composites. Lect Notes Mech Eng 705–715. https://doi.org/10.1007/978-3-030-41057-5_57/COVER

  32. Giuliani PM, Giannini O, Panciroli R (2018) Viscoelastic experimental characterization of flax/epoxy composites. Procedia Structural Integrity 12:296–303. https://doi.org/10.1016/J.PROSTR.2018.11.086

    Article  Google Scholar 

  33. Giuliani PM, Giannini O, Panciroli R (2023) Creep and stress relaxation of unidirectional flax fiber reinforced laminates. Compos Struct 310:116755. https://doi.org/10.1016/J.COMPSTRUCT.2023.116755

  34. Bos HL, Molenveld K, Teunissen W et al (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mater Sci 39:6 39:2159–2168. https://doi.org/10.1023/B:JMSC.0000017779.08041.49

  35. ISO 3597-3(1993) Textile-glass-reinforced plastics — Determination of mechanical properties on rods made of roving-reinforced resin — Part 3: Determination of compressive strength. https://www.iso.org/standard/9015.html. Accessed 8 Jun 2023

  36. Van Vuure AW, Baets J, Wouters K, Hendrickx K (2015) Compressive properties of natural fibre composites. Mater Lett 149:138–140. https://doi.org/10.1016/J.MATLET.2015.01.158

    Article  Google Scholar 

  37. Baley C, Goudenhooft C, Perré P et al (2019) Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Ind Crops Prod 130:25–33. https://doi.org/10.1016/J.INDCROP.2018.12.059

    Article  Google Scholar 

  38. Prapavesis A, Tojaga V, Östlund S, Willem van Vuure A (2020) Back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT). Compos Part A Appl Sci Manuf 135:105930. https://doi.org/10.1016/J.COMPOSITESA.2020.105930

  39. ASTM D3410M-16e1 (2021) Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading. https://www.astm.org/d3410_d3410m-16e01.html. Accessed 25 Aug 2022

  40. Nicolinco C, Mahboob Z, Chemisky Y et al (2021) Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Compos Part A Appl Sci Manuf 140:106153. https://doi.org/10.1016/J.COMPOSITESA.2020.106153

  41. Mahboob Z, El Sawi I, Zdero R et al (2017) Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Compos Part A Appl Sci Manuf 92:118–133. https://doi.org/10.1016/j.compositesa.2016.11.007

    Article  Google Scholar 

  42. Le Duigou A, Davies P, Baley C (2010) Macroscopic analysis of interfacial properties of flax/PLLA biocomposites. Compos Sci Technol 70:1612–1620. https://doi.org/10.1016/J.COMPSCITECH.2010.06.001

    Article  Google Scholar 

  43. Petrone G, Meruane V (2017) Mechanical properties updating of a non-uniform natural fibre composite panel by means of a parallel genetic algorithm. Compos Part A Appl Sci Manuf 94:226–233. https://doi.org/10.1016/J.COMPOSITESA.2016.12.017

    Article  Google Scholar 

  44. Panzera TH, Jeannin T, Gabrion X et al (2020) Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering. Compos B Eng 197:108049. https://doi.org/10.1016/J.COMPOSITESB.2020.108049

  45. Herrera-Franco PJ, Drzal LT (1992) Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23:2–27. https://doi.org/10.1016/0010-4361(92)90282-Y

    Article  Google Scholar 

  46. Liang S, Gning PB, Guillaumat L (2015) Quasi-static behaviour and damage assessment of flax/epoxy composites. Mater Des 67:344–353. https://doi.org/10.1016/J.MATDES.2014.11.048

    Article  Google Scholar 

  47. ISO - ISO 527–4(1997) Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites. https://www.iso.org/standard/4595.html. Accessed 26 Aug 2022

  48. ISO - ISO 14126(1999) Fibre-reinforced plastic composites — Determination of compressive properties in the in-plane direction. https://www.iso.org/standard/23638.html. Accessed 26 Aug 2022

  49. ISO - ISO 14129(1997) Fibre-reinforced plastic composites — Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method. https://www.iso.org/standard/23641.html. Accessed 26 Aug 2022

  50. ASTM D3039M-17 (2017) Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. https://www.astm.org/d3039_d3039m-08.html. Accessed 25 Aug 2022

  51. Saadati Y, Lebrun G, Chatelain J-F, Beauchamp Y (2020) Experimental investigation of failure mechanisms and evaluation of physical/mechanical properties of unidirectional flax–epoxy composites. J Compos Mater 54:2781–2801. https://doi.org/10.1177/0021998320902243

    Article  Google Scholar 

  52. ASTM D6641M-16e2 (2021) Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. https://www.astm.org/d6641_d6641m-16e02.html. Accessed 25 Aug 2022

  53. ASTM D5379M-19e1 (2021) Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. https://www.astm.org/d5379_d5379m-19e01.html. Accessed 25 Aug 2022

  54. Sun Q, Guo H, Zhou G et al (2018) Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading. Compos Struct 203:335–348. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.028

    Article  Google Scholar 

  55. Tang H, Sun Q, Li Z et al (2021) Longitudinal compression failure of 3D printed continuous carbon fiber reinforced composites: An experimental and computational study. Compos Part A Appl Sci Manuf 146:106416. https://doi.org/10.1016/J.COMPOSITESA.2021.106416

  56. Carlsson LA, Adams DF, Pipes RB (2014) Experimental characterization of advanced composite materials, 4th edn. CRC Press. https://www.routledge.com/Experimental-Characterization-ofAdvanced-Composite-Materials/Carlsson-Adams-Pipes/p/book/9781439848586

    Book  MATH  Google Scholar 

  57. Haluza RT, Koudela KL, Bakis CE et al (2022) Shear Strain Measurement Techniques in Composite V-Notch Shear Testing. Exp Mech 62:1655–1671. https://doi.org/10.1007/S11340-022-00897-9/FIGURES/25

    Article  Google Scholar 

  58. Baley C, Bourmaud A, Davies P (2021) Eighty years of composites reinforced by flax fibres: A historical review. Compos Part A Appl Sci Manuf 144:106333. https://doi.org/10.1016/j.compositesa.2021.106333

  59. Hashim N, Majid DL, Uda N et al (2017) Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite. IOP Conf Ser Mater Sci Eng 270:012021. https://doi.org/10.1088/1757-899X/270/1/012021

  60. Shakir Abbood I, Odaa S, aldeen, Hasan KF, Jasim MA (2021) Properties evaluation of fiber reinforced polymers and their constituent materials used in structures – A review. Mater Today Proc 43:1003–1008. https://doi.org/10.1016/j.matpr.2020.07.636

    Article  Google Scholar 

  61. ASTM D5229M-20 (2020) Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. https://www.astm.org/d5229_d5229m-20.html. Accessed 25 Aug 2022

  62. Lu mm, Fuentes CA, van Vuure AW (2022) Moisture sorption and swelling of flax fibre and flax fibre composites. Compos B Eng 231:109538. https://doi.org/10.1016/j.compositesb.2021.109538

  63. Phillips S, Baets J, Lessard L et al (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Compos 32:777–785. https://doi.org/10.1177/0731684412473359

    Article  Google Scholar 

  64. Christensen RM (1998) The Numbers of Elastic Properties and Failure Parameters for Fiber Composites. J Eng Mater Technol 120:110–113. https://doi.org/10.1115/1.2806997

    Article  Google Scholar 

  65. ASTM D7078M-20e1 (2021) Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method. https://www.astm.org/d7078_d7078m-05.html. Accessed 3 Mar 2023

  66. ABAQUS [Computer software] (2022) ABAQUS analysis user’s manual, Version ABAQUS 2017, Providence, RI, Dassault Systemes Simulia. http://130.149.89.49:2080/v6.14/books/usb/default.htm

  67. ASTM D695–15 (2016) Standard Test Method for Compressive Properties of Rigid Plastics. https://www.astm.org/d0695-15.html. Accessed 25 Aug 2022

  68. Morton J, ho H, Tsai MY, Farley GL (2016) An Evaluation of the Iosipescu Specimen for Composite Materials Shear Property Measurement. J Compos Mater 26:708–750. https://doi.org/10.1177/002199839202600505

    Article  Google Scholar 

  69. Adams DO, Moriarty JM, Gallegos AM, Adams DF (2006) The V-Notched Rail Shear Test. J Compos Mater 41:281–297. https://doi.org/10.1177/0021998306063369

    Article  Google Scholar 

  70. Chegdani F, Takabi B, el Mansori M et al (2020) Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. J Manuf Process 54:337–346. https://doi.org/10.1016/J.JMAPRO.2020.03.025

    Article  Google Scholar 

  71. Zhong R, Wille K (2016) Equal Arc Segment Method for Averaging Data Plots Exemplified for Averaging Stress versus Strain Curves of Pervious Concrete. J Mater Civ Eng 28:04015071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001345

    Article  Google Scholar 

  72. Shah DU, Schubel PJ, Clifford MJ, Licence P (2012) The tensile behavior of off-axis loaded plant fiber composites: An insight on the nonlinear stress-strain response. Polym Compos 33:1494–1504. https://doi.org/10.1002/pc.22279

    Article  Google Scholar 

  73. Popineau V, Célino A, Le Gall M et al (2021) Vacuum-Bag-Only (VBO) Molding of Flax Fiber-reinforced Thermoplastic Composites for Naval Shipyards. Appl Compos Mater 28:791–808. https://doi.org/10.1007/S10443-021-09890-2/FIGURES/8

    Article  Google Scholar 

  74. Poilâne C, Gehring F, Yang H, Richard F (2018) About Nonlinear Behavior of Unidirectional Plant Fibre Composite. Adv Nat Fibre Compos 69–79. https://doi.org/10.1007/978-3-319-64641-1_7

  75. Campana C, Leger R, Sonnier R et al (2018) Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Compos Part A Appl Sci Manuf 107:171–179. https://doi.org/10.1016/J.COMPOSITESA.2017.12.029

    Article  Google Scholar 

  76. Schultheisz CR, Waas AM (1996) Compressive failure of composites, part I: Testing and micromechanical theories. Prog Aerosp Sci 32:1–42. https://doi.org/10.1016/0376-0421(94)00002-3

    Article  Google Scholar 

  77. Pierron F, Vautrin A (1998) Measurement of the in-plane shear strengths of unidirectional composites with the Iosipescu test. Compos Sci Technol 57:1653–1660. https://doi.org/10.1016/S0266-3538(97)00099-7

    Article  Google Scholar 

  78. Odegard G, Kumosa M (2000) Determination of shear strength of unidirectional composite materials with the Iosipescu and 10° off-axis shear tests. Compos Sci Technol 60:2917–2943. https://doi.org/10.1016/S0266-3538(00)00141-X

    Article  Google Scholar 

  79. Chiang MYM, He J (2002) An analytical assessment of using the losipescu shear test for hybrid composites. Compos B Eng 33:461–470. https://doi.org/10.1016/S1359-8368(02)00022-7

    Article  Google Scholar 

  80. Stojcevski F, Hilditch T, Henderson LC (2018) A modern account of Iosipescu testing. Compos Part A Appl Sci Manuf 107:545–554. https://doi.org/10.1016/J.COMPOSITESA.2018.02.011

    Article  Google Scholar 

  81. Camanho PP, Dávila CG, Pinho ST et al (2006) Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos Part A Appl Sci Manuf 37:165–176. https://doi.org/10.1016/J.COMPOSITESA.2005.04.023

    Article  Google Scholar 

  82. Puck A, Kopp J, Knops M (2002) Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos Sci Technol 62:371–378. https://doi.org/10.1016/S0266-3538(01)00202-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Mr. Palagala Venkatesh Yadav, research scholar, and technical staffs Mr. A Priyangan and Mr. S Ruthrapathi in the Department of Civil and Environmental Engineering for their help during experiments. Also, would like to thank Amara Raja Batteries Limited (ARBL) for allowing us to use their characterization facility.

Author information

Authors and Affiliations

Authors

Contributions

[P V Divakarraju] - Conception, Experimental design, Carrying out measurements, Manuscript composition. [M Nithyadharan] - Conception, Experimental design, Manuscript composition. [V Pandurangan] - Conception, Experimental design, Manuscript composition.

Corresponding author

Correspondence to M. Nithyadharan.

Ethics declarations

Ethical Approval

Not Applicable.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6324 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakarraju, P.V., Nithyadharan, M. & Pandurangan, V. An Improved Test Procedure for Mechanical Characterization of Flax-Epoxy Composites. Exp Mech 63, 1285–1308 (2023). https://doi.org/10.1007/s11340-023-00988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-00988-1

Keywords

Navigation