Skip to main content
Log in

High-Throughput High-Resolution Digital Image Correlation Measurements by Multi-Beam SEM Imaging

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Recent improvements in spatial resolution and measurement sensitivity for high-resolution digital image correlation (HR-DIC) now provide an avenue for the quantitative measurement of deformation events and capturing the physical nature of deformation mechanisms. However, HR-DIC measurements require significant time due to scanning electron image acquisition; such a limitation prevents the widespread use of HR-DIC for material characterization.

Objective

Apply a novel SEM acquisition technology to enhance HR-DIC measurements for high throughput applications.

Methods

Multi-beam SEM technology is employed to image an entire gauge length at once at high resolution and at nearly a hundredfold acceleration of typical HR-DIC image acquisition, even when automated stage movement and image acquisition are employed. These images were fed into a discontinuity-tolerant HR-DIC software to determine slip localization induced by non-metallic inclusions and grain structure.

Results

Slip localization was able to be analyzed to an unprecedented level, with over 210,000 slip bands able to be investigated, with the most intense slip localizing near and parallel to twin boundaries and in the vicinity of non-metallic inclusion clusters. Additionally, secondary slip activation and grain boundary shearing by intense dislocation pileups are observed to reduce slip amplitude near and parallel to twin boundaries.

Conclusions

By performing HR-DIC in conjunction with a multi-beam SEM, high-throughput measurements of large field-of-view, high-resolution images were able to be performed in a timely manner. These measurements provided an immense number of slip events for statistical analysis to be performed on to relate to microstructural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM (2016) Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp Mech 56(2):197–216. https://doi.org/10.1007/s11340-015-0083-4. (ISSN 1741–2765)

    Article  Google Scholar 

  2. Magazzeni CM, Gardner HM, Howe I, Gopon P, Waite JC, Rugg D, Armstrong DEJ, Wilkinson AJ (2021) Nanoindentation in multi-modal map combinations: a correlative approach to local mechanical property assessment. J Mater Res 36(11):2235–2250. https://doi.org/10.1557/s43578-020-00035-y. (ISSN 2044–5326)

    Article  Google Scholar 

  3. Wheeler JM, Gan B, Spolenak R (2022) Combinatorial investigation of the ni–ta system via correlated high-speed nanoindentation and edx mapping. Small Methods 6(2):2101084. https://doi.org/10.1002/smtd.202101084

    Article  Google Scholar 

  4. Jelinek A, Zak S, Alfreider M, Kiener D (2022) High-throughput micromechanical testing enabled by optimized direct laser writing. Adv Eng Mater 25(7):202200288. https://doi.org/10.1002/adem

    Article  Google Scholar 

  5. Ando T (2017) High-speed atomic force microscopy and its future prospects. Biophys Rev 10(2):285–292. https://doi.org/10.1007/s12551-017-0356-5

    Article  Google Scholar 

  6. Stinville JC, Charpagne MC, Cervellon A, Hemery S, Wang F, Callahan PG, Valle V, Pollock TM (2022) On the origins of fatigue strength in crystalline metallic materials. Science 377(6610):1065–1071

    Article  MathSciNet  Google Scholar 

  7. Bourdin F, Stinville JC, Echlin MP, Callahan PG, Lenthe WC, Torbet CJ, Texier D, Bridier F, Cormier J, Villechaise P, Pollock TM, Valle V (2018) Measurements of plastic localization by heaviside-digital image correlation. Acta Mater 157:307–325. https://doi.org/10.1016/j.actamat.2018.07.013. (ISSN 1359–6454)

    Article  Google Scholar 

  8. Chen Z, Lenthe W, Stinville JC, Echlin M, Pollock TM, Daly S (2018) High-resolution deformation mapping across large fields of view using scanning electron microscopy and digital image correlation. Exp Mech 58(9):1407–1421. https://doi.org/10.1007/s11340-018-0419-y. (ISSN 1741–2765)

    Article  Google Scholar 

  9. Jiang R, Pierron F, Octaviani S, Reed PAS (2017) Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by sem-dic in an advanced disc alloy. Mater Sci Eng A 699:128–144. https://doi.org/10.1016/j.msea.2017.05.091. (ISSN 0921–5093)

    Article  Google Scholar 

  10. Edwards TEJ, Di Gioacchino F, Clegg WJ (2021) High resolution digital image correlation mapping of strain localization upon room and high temperature, high cycle fatigue of a tial intermetallic alloy. Int J Fatigue 142:105905. https://doi.org/10.1016/j.ijfatigue.2020.105905. (ISSN 0142–1123)

    Article  Google Scholar 

  11. Mello AW, Nicolas A, Sangid MD (2017) Fatigue strain mapping via digital image correlation for ni-based superalloys: the role of thermal activation on cube slip. Mater Sci Eng A 695:332–341. https://doi.org/10.1016/j.msea.2017.04.002. (ISSN 0921–5093)

    Article  Google Scholar 

  12. Xu X, Lunt D, Thomas R, Prasath Babu R, Harte A, Atkinson M, da Fonseca JQ, Preuss M (2019) Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy. Acta Mater 175:376–393. https://doi.org/10.1016/j.actamat.2019.06.024. (ISSN 1359–6454)

    Article  Google Scholar 

  13. Sperry R, Han S, Chen Z, Daly SH, Crimp MA, Fullwood DT (2021) Comparison of ebsd, dic, afm, and ecci for active slip system identification in deformed ti-7al. Mater Charact 173:110941. https://doi.org/10.1016/j.matchar.2021.110941. (ISSN 1044–5803)

    Article  Google Scholar 

  14. Stinville JC, Francis T, Polonsky AT, Torbet CJ, Charpagne MA, Chen Z, Balbus GH, Bourdin F, Valle V, Callahan PG, Echlin MP, Pollock TM (2021) Time-resolved digital image correlation in the scanning electron microscope for analysis of time-dependent mechanisms. Exp Mech 61(2):331–348. https://doi.org/10.1007/s11340-020-00632-2. (ISSN 17412765)

    Article  Google Scholar 

  15. Montgomery CB, Koohbor B, Sottos NR (2019) A robust patterning technique for electron microscopy-based digital image correlation at sub-micron resolutions. Exp Mech 59(7):1063–1073. https://doi.org/10.1007/s11340-019-00487-2

    Article  Google Scholar 

  16. Hoefnagels JPM, van Maris MPFHL, Vermeij T (2019) One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strainiin-situ/imulti-microscopy testing. Strain 55(6):e12330. https://doi.org/10.1111/str.12330

    Article  Google Scholar 

  17. Kammers AD, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53(8):1333–1341. https://doi.org/10.1007/s11340-013-9734-5. (ISSN 0014–4851)

    Article  Google Scholar 

  18. Kammers AD, Daly S (2013) Digital image correlation under scanning electron microscopy: Methodology and validation. Exp Mech 53(9):1743–1761. https://doi.org/10.1007/s11340-013-9782-x. (ISSN 0014–4851)

    Article  Google Scholar 

  19. Chen Z, Daly S (2018) Deformation twin identification in magnesium through clustering and computer vision. Mater Sci Eng A 736:61–75. https://doi.org/10.1016/j.msea.2018.08.083. (ISSN 0921–5093)

    Article  Google Scholar 

  20. Mansouri Arani M, Ramesh NS, Wang X, Parson N, Li M, Poole WJ (2022) The localization of plastic deformation in the precipitate free zone of an al-mg-si-mn alloy. Acta Mater 231:117872. https://doi.org/10.1016/j.actamat.2022.117872. (ISSN 1359–6454)

    Article  Google Scholar 

  21. Atkinson MD, Donoghue JM, da Fonseca JQ (2020) Measurement of local plastic strain during uniaxial reversed loading of nickel alloy 625. Mater Charact 168:110561. https://doi.org/10.1016/j.matchar.2020.110561. (ISSN 1044–5803)

    Article  Google Scholar 

  22. Harr ME, Daly S, Pilchak AL (2021) The effect of temperature on slip in microtextured ti-6al-2sn-4zr-2mo under dwell fatigue. Int J Fatigue 147:106173. https://doi.org/10.1016/j.ijfatigue.2021.106173. (ISSN 0142–1123)

    Article  Google Scholar 

  23. Linne MA, Bieler TR, Daly S (2020) The effect of microstructure on the relationship between grain boundary sliding and slip transmission in high purity aluminum. Int J Plast 135:102818. https://doi.org/10.1016/j.ijplas.2020.102818. (ISSN 0749–6419)

    Article  Google Scholar 

  24. Rotella J, Mello AW, Venkataraman A, Buckingham R, Hardy M, Sangid MD (2021) Dwellfatigue of ni-based superalloys with serrated and planar grain boundary morphologies: yhe role of the γ phase on strain accumulation and cavitation. Metall Mater Trans A 52(11):5079–5095. https://doi.org/10.1007/s11661-021-06454-8. (ISSN 1543–1940)

    Article  Google Scholar 

  25. Weidner A, Biermann H (2021) Review on strain localization phenomena studied by high-resolution digital image correlation. Adv Eng Mater 23(4):2001409. https://doi.org/10.1002/adem.202001409

    Article  Google Scholar 

  26. Vermeij T, Hoefnagels JPM (2022) Plasticity, localization, and damage in ferritic-pearlitic steel studied by nanoscale digital image correlation. Scr Mater 208:114327. https://doi.org/10.1016/j.scriptamat.2021. (ISSN 1359–6462)

    Article  Google Scholar 

  27. Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Inst 81(8):083703. https://doi.org/10.1063/1.3474902

    Article  Google Scholar 

  28. Guery A, Hild F, Latourte F, Roux S (2016) Slip activities in polycrystals determined by coupling dic measurements with crystal plasticity calculations. Int J Plast 81:249–266. https://doi.org/10.1016/j.ijplas.2016.01.008. (ISSN 0749–6419)

    Article  Google Scholar 

  29. Wang X, Pan Z, Fan F, Wang J, Liu Y, Mao SX, Zhu T, Xia S (2015) Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation. J Appl Mech 82(12):121001. https://doi.org/10.1115/1.4031332. (ISSN 0021–8936)

    Article  Google Scholar 

  30. Zhang Y, Feng L, Dillon S, Lambros J (2022) Full-field deformation measurements in the transmission electron microscope using digital image correlation and particle tracking. Mater Charact 183:111598. https://doi.org/10.1016/j.matchar.2021.111598. (ISSN 1044–5803)

    Article  Google Scholar 

  31. Carroll JD, Abuzaid W, Lambros J, Sehitoglu H (2013) High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int J Fatigue 57:140–150. https://doi.org/10.1016/j.ijfatigue.2012.06.010. (ISSN 0142–1123; Fatigue and Microstructure: A special issue on recent advances)

    Article  Google Scholar 

  32. Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J (2012) Slip transfer and plastic strain accumulation across grain boundaries in hastelloy x. J Mech Phys Solids 60(6):1201–1220. https://doi.org/10.1016/j.jmps.2012.02.001. (ISSN 0022–5096)

    Article  Google Scholar 

  33. Bertin M, Du C, Hoefnagels JPM, Hild F (2016) Crystal plasticity parameter identification with 3d measurements and integrated digital image correlation. Acta Mater 116:321–331. https://doi.org/10.1016/j.actamat.2016.06.039. (ISSN 1359–6454)

    Article  Google Scholar 

  34. Keller AL, Zeidler D, Kemen T (2014) High throughput data acquisition with a multi-beam SEM. In: Postek MT, Newbury DE, Frank Platek S, Maugel TK (eds) SPIE Proceedings. SPIE. https://doi.org/10.1117/12.2069119

    Chapter  Google Scholar 

  35. Texier D, Stinville JC, Echlin MP, Pierret S, Villechaise P, Pollock TM, Cormier J (2019) Short crack propagation from cracked non-metallic inclusions in a ni-based polycrystalline superalloy. Acta Mater 165:241–258. https://doi.org/10.1016/j.actamat.2018.11.051. (ISSN 1359–6454)

    Article  Google Scholar 

  36. Texier D, Stinville JC, Charpagne MA, Chen Z, Valle V, Villechaise P, Pollock TM, Cormier J (2020) Role of non-metallic inclusions and twins on the variability in fatigue life in alloy 718 nickel base superalloy. In: Tin S, Hardy M, Clews J, Cormier J, Feng Q, Marcin J, O’Brien C, Suzuki A (eds) Superalloys. Springer International Publishing, Cham, pp 629–639 (ISBN 978–3–030–51834–9)

    Google Scholar 

  37. Marx V (2013) Brain mapping in high resolution. Nature 503(7474):147–152. https://doi.org/10.1038/503147a. (ISSN 1476–4687)

    Article  Google Scholar 

  38. Hull D, Bacon DJ (2011) Introduction to dislocations. Materials science and technology. Elsevier Science (ISBN 9780080966731)

    Google Scholar 

  39. Charpagne MA, Strub F, Pollock TM (2019) Accurate reconstruction of ebsd datasets by a multimodal data approach using an evolutionary algorithm. Mater Charact 150:184–198. https://doi.org/10.1016/j.matchar.2019.01.033. (ISSN 1044–5803)

    Article  Google Scholar 

  40. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3d microscopic image acquisitions. Bioinformatics 25(11):1463–1465. https://doi.org/10.1093/bioinformatics/btp184. (ISSN 1367–4811)

    Article  Google Scholar 

  41. Stinville JC, Martin E, Karadge M, Ismonov S, Soare M, Hanlon T, Sundaram S, Echlin MP, Callahan PG, Lenthe WC, Miller VM, Miao J, Wessman AE, Finlay R, Loghin A, Marte J, Pollock TM (2018) Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes. Acta Mater 152:16–33. https://doi.org/10.1016/j.actamat.2018.03.035. (ISSN 1359–6454)

    Article  Google Scholar 

  42. Luster J, Morris MA (1995) Compatibility of deformation in two-phase ti-al alloys: dependence on microstructure and orientation relationships. Metall Mater Trans A 26(7):1745–1756. https://doi.org/10.1007/BF02670762. (Cited by: 266)

    Article  Google Scholar 

  43. Mughrabi H (2013) Cyclic slip irreversibility and fatigue life: a microstructure-based analysis. Acta Mater 61(4):1197–1203. https://doi.org/10.1016/j.actamat.2012.10.029. (ISSN 1359–6454)

    Article  Google Scholar 

  44. Pinz M, Weber G, Stinville JC, Pollock T, Ghosh S (2022) Data-driven bayesian model-based prediction of fatigue crack nucleation in ni-based superalloys. npj Comput Mater 8(1):39. https://doi.org/10.1038/s41524-022-00727-5. (ISSN 2057–3960)

    Article  Google Scholar 

  45. Zhang X, Stinville JC, Pollock TM, Dunne FPE (2021) Crystallography and elastic anisotropy in fatigue crack nucleation at nickel alloy twin boundaries. J Mech Phys Solids 155:104538. https://doi.org/10.1016/j.jmps.2021.104538. (ISSN 0022–5096)

    Article  MathSciNet  Google Scholar 

  46. Sperry R, Harte A, da Fonseca JQ, Homer ER, Wagoner RH, Fullwood DT (2020) Slip band characteristics in the presence of grain boundaries in nickel-based superalloy. Acta Mater 193:229–238. https://doi.org/10.1016/j.actamat.2020.04.037. (ISSN 1359–6454)

    Article  Google Scholar 

  47. Hirth JP, Lothe J, Mura T (1983) Theory of dislocations (2nd ed.). J Appl Mech 50(2):476–477. https://doi.org/10.1115/1.3167075. (ISSN 0021–8936)

    Article  Google Scholar 

  48. Villechaise P, Cormier J, Billot T, Mendez J (2012) Mechanical behaviour and damage processes of Udimet 720Li: influence of localized plasticity at grain boundaries. 12th International Symposium on Superalloys, pp 15–24

    Google Scholar 

  49. Larrouy B, Villechaise P, Cormier J, Berteaux O (2015) Grain boundary–slip bands interactions: impact on the fatigue crack initiation in a polycrystalline forged ni-based superalloy. Acta Mater 99:325–336. https://doi.org/10.1016/j.actamat.2015.08.009. (ISSN 1359–6454)

    Article  Google Scholar 

  50. Bergsmo A, Xu Y, Poole B, Dunne FPE (2022) Twin boundary fatigue crack nucleation in a polycrystalline nickel superalloy containing non-metallic inclusions. J Mech Phys Solids 160:104785. https://doi.org/10.1016/j.jmps.2022.104785. (ISSN 0022–5096)

    Article  Google Scholar 

Download references

Acknowledgements

R.L.B., C.B., and J.C.S. are grateful for financial support from the Energy & Biosciences Institute (EBI) through the EBI-Shell Program. This work was partly carried out in the Materials Research Laboratory Central Research Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Black.

Ethics declarations

Conflicts of Interests

The authors declare they do not have any known conflicts of interests, financial or personal, regarding this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Colorblind-friendly versions (protanopia, deuteranopia, tritanopia, and BGR-to-RBG) are provided in supplementary materials. Figures were generated using the Python Colorblind package version 0.0.9 and the ImageJ Simulate Color Blindness plug-in under the Image>Color menu (Wolfgang Rahfeldt 2021, Colorblind, Version 0.0.9. Retrieved from https://pypi.org/project/colorblind/ and J Schindelin et al, 2012, Fiji: an open-source platform for biological-image analysis, Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019.)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, R.L., Garbowski, T., Bean, C. et al. High-Throughput High-Resolution Digital Image Correlation Measurements by Multi-Beam SEM Imaging. Exp Mech 63, 939–953 (2023). https://doi.org/10.1007/s11340-023-00961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-00961-y

Keywords

Navigation