Skip to main content
Log in

Indentation Testing Method for Determining Mechanical Properties and Tensile Flow Curve of High-Strength Rail Steels

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Instrumented ball indentation offers a promising approach to determining mechanical properties and tensile stress–strain relationships of materials, non-destructively. Objective: Using indentation load-depth experimentation to determine mechanical properties such as Young’s modulus, yield stress, strain hardening exponent and hardness, and tensile flow curve based on conventional contact mechanics principles.

Method

Nine different rail steel specimens are subjected to instrumented indentation testing (IIT) using an in-house developed ball indentation equipment that considers pile-up effect for effective estimation of the contact area and specimen’s stiffness required for mechanical characterization of the rail steels.

Results

The mechanical property response using micro-scaled ball indentation followed a comparative outcome with tensile test outcomes. The evolution of the hardness across the depth experiences a sudden increase followed by a decrease in hardness which suggests the effect of localized hardening due to indenter size effect mechanism. In order to establish the tensile flow curve via indentation, an adjusting parameter (κ) is included as part of the parameter (ϕ) that describes the development of the plastic zone beneath the indenter tip to correct the effect of multi-axial stresses and increased stresses due to the indenter size effect.

Conclusions

The flow curve via the ball indentation strongly correlates with tensile stress–strain relationship, showing a promising possibility of using non-destructive indentation to determine tensile properties and flow curve for high-strength rail steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Kaya U, Schmidova E (2016) Spherical indentation approach to determine mechanical properties of Hadfield’s steel. In METAL 2016: 25th International Conference on Metallurgy and Materials. TANGER, spol. s ro

  2. Yu F, Jar PYB, Hendry MT, Jar C, Nishanth K (2018) Fracture toughness estimation for high-strength rail steels using indentation test. Eng Fract Mech 204(October):469–481. https://doi.org/10.1016/j.engfracmech.2018.10.030

    Article  Google Scholar 

  3. Haggag FM, Nanstad RK, Braski DN (1989) Structural integrity evaluation based on an innovative field indentation microprobe. No. CONF-890721-25. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States)

    Google Scholar 

  4. Nsengiyumva W, Zhong S, Lin J, Zhang Q, Zhong J, Huang Y (2021) Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos Struct 256(June 2020):112951. https://doi.org/10.1016/j.compstruct.2020.112951

    Article  Google Scholar 

  5. Palermo PM (1975) An overview of structural integrity technology. SNAME, In Ship Structure Symposium, Washington, D.C., October 6-8

  6. Raj B, Jayakumar T, Rao BPC (1995) Non-destructive testing and evaluation for structural integrity. Sadhana 20(1):5–38. https://doi.org/10.1007/BF02747282

    Article  Google Scholar 

  7. Nanekar PP, Shah BK (2003) Characterization of material properties by ultrasonics. BARC Newsl 249:25–38

    Google Scholar 

  8. Moussa C, Bartier O, Hernot X, Mauvoisin G, Collin J-M, Delattre G (2016) Mechanical characterization of carbonitrided steel with spherical indentation using the average representative strain. Mater Des 89:1191–1198. https://doi.org/10.1016/j.matdes.2015.10.067

    Article  Google Scholar 

  9. Jeon EC, Kim JY, Baik MK, Kim SH, Park JS, Kwon D (2006) Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves. Mater Sci Eng A 419(1–2):196–201. https://doi.org/10.1016/j.msea.2005.12.012

    Article  Google Scholar 

  10. Lee H, Haeng Lee J, Pharr GM (2005) A numerical approach to spherical indentation techniques for material property evaluation. J Mech Phys Solids 53:2037–2069. https://doi.org/10.1016/j.jmps.2005.04.007

    Article  MATH  Google Scholar 

  11. Barbadikar DR, Ballal AR, Peshwe DR, Ganeshkumar J, Laha K, Mathew MD (2015) Investigation on mechanical properties of P92 steel using ball indentation technique. Mater Sci Eng A 624:92–101. https://doi.org/10.1016/j.msea.2014.11.075

    Article  Google Scholar 

  12. Wang F, Zhao J, Zhu N, Li Z (2015) A comparative study on Johnson-Cook constitutive modeling for Ti-6Al-4V alloy using automated ball indentation (ABI) technique. J Alloys Compd 633:220–228. https://doi.org/10.1016/j.jallcom.2015.01.284

    Article  Google Scholar 

  13. Ammar HR, Haggag FM, Alaboodi AS, Al-Mufadi FA (2018) Nondestructive measurements of flow properties of nanocrystalline Al-Cu-Ti alloy using Automated Ball Indentation (ABI) technique. Mater Sci Eng A 729(February):477–486. https://doi.org/10.1016/j.msea.2018.05.089

    Article  Google Scholar 

  14. Byun TS, Hong JH, Haggag FM, Farrell K, Lee EH (1997) Measurement of through-the-thickness variations of mechanical properties in SA508 Gr.3 pressure vessel steels using ball indentation test technique. Int J Press Vessel Pip 74(3):231–238. https://doi.org/10.1016/S0308-0161(97)00114-2

    Article  Google Scholar 

  15. Collin JM, Mauvoisin G, Pilvin P (2010) Materials characterization by instrumented indentation using two different approaches. Mater Des 31(1):636–640. https://doi.org/10.1016/j.matdes.2009.05.043

    Article  Google Scholar 

  16. Collin JM, Mauvoisin G, Pilvin P, El Abdi R (2008) Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Mater Sci Eng A 488(1–2):608–622. https://doi.org/10.1016/j.msea.2008.01.041

    Article  Google Scholar 

  17. Beghini M, Bertini L, Fontanari V (2006) Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int J Solids Struct 43(7–8):2441–2459. https://doi.org/10.1016/j.ijsolstr.2005.06.068

    Article  MATH  Google Scholar 

  18. Bartier O, Hernot X (2012) Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material. International Journal of Solids and Structures, Elsevier 49:2015–2026. https://doi.org/10.1016/j.ijsolstr.2012.04.005ff.ffhal-00861520

    Article  Google Scholar 

  19. Tabor D (1948) A simple theory of static and dynamic hardness. Proc R Soc Lond 192(1029):247–274. https://doi.org/10.1098/rspa.1948.0008

    Article  Google Scholar 

  20. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57. https://doi.org/10.1016/0020-7225(65)90019-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Doerner CMF, Nix WD (1986) A Method for Interpreting the Data from Depth Sensing Indentation Instruments. J Mater Res 1(4):601–609

    Article  Google Scholar 

  22. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/JMR.1992.1564.(First,lastnames)

    Article  Google Scholar 

  23. Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7(3):613–617. https://doi.org/10.1557/JMR.1992.0613

    Article  Google Scholar 

  24. Pharr GM, Oliver WC (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19(01):3–20

    Article  Google Scholar 

  25. Biwa S, Storåkers B (1995) An analysis of fully plastic Brinell indentation. J Mech Phys Solids 43(8):1303–1333. https://doi.org/10.1016/0022-5096(95)00031-D

    Article  MathSciNet  MATH  Google Scholar 

  26. Haggag FM, Nanstad RK (1989) Estimating fracture toughness using tension or ball indentation tests and a modified critical strain model. Am Soc Mech Eng Press Vessel Pip Div PVP 170:41–46

    Google Scholar 

  27. Haggag FM, Nanstad RK, Hutton JT, Thomas DL, Swain RL (1990) Use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials. ASTM Spec Tech Publ 1092:188–208. https://doi.org/10.1520/stp25039s

    Article  Google Scholar 

  28. Spary IJ, Bushby AJ, Jennett NM (2006) On the indentation size effect in spherical indentation. Philos Mag 86(33-35 SPEC. ISSUE):5581–5593. https://doi.org/10.1080/14786430600854988

    Article  Google Scholar 

  29. Matthews JR (1980) Indentation hardness and hot pressing. Acta Metall 28(3):311–318. https://doi.org/10.1016/0001-6160(80)90166-2

    Article  Google Scholar 

  30. Yan W, Sun Q, Hodgson PD (2008) Determination of plastic yield stress from spherical indentation slope curve. Mater Lett 62(15):2260–2262. https://doi.org/10.1016/j.matlet.2007.11.062

    Article  Google Scholar 

  31. Yang S, Yang Z, Ling X (2014) Fracture toughness estimation of ductile materials using a modified energy method of the small punch test. J Mater Res 29(15):1675–1680. https://doi.org/10.1557/jmr.2014.205

    Article  Google Scholar 

  32. Yu F, Jar PYB, Hendry MT (2018) Indentation for fracture toughness estimation of high-strength rail steels based on a stress triaxiality-dependent ductile damage model. Theor Appl Fract Mech 94(December 2017):10–25. https://doi.org/10.1016/j.tafmec.2018.01.003

    Article  Google Scholar 

  33. Ma D, Chung WO, Liu J, He J (2004) Determination of Young’s modulus by nanoindentation. Sci China Ser E Technol Sci 47(4):398–408. https://doi.org/10.1360/03ye0590

    Article  Google Scholar 

  34. Huber N, Munz D, Tsakmakis C (1997) Determination of Young’s modulus by spherical indentation. J Mater Res 12(9):2459–2469. https://doi.org/10.1557/JMR.1997.0325

    Article  Google Scholar 

  35. Shuman DJ, Costa ALM, Andrade MS (2007) Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater Charact 58(4):380–389. https://doi.org/10.1016/j.matchar.2006.06.005

    Article  Google Scholar 

  36. Xue FM, Li FG, Li J, He M (2012) Strain energy density method for estimating fracture toughness from indentation test of 0Cr12Mn5Ni4Mo3Al steel with Berkovich indenter. Theor Appl Fract Mech 61(1):66–72. https://doi.org/10.1016/j.tafmec.2012.08.008

    Article  Google Scholar 

  37. Lenwari A, Albrecht P, Albrecht M (2005) SED method of measuring yield strength of adhesives and other materials. J ASTM Int 2(10):377–394. https://doi.org/10.1520/JAI12954

    Article  Google Scholar 

  38. Johnson KL (1985) Contact mechanics. Cambridge University Press

    Book  MATH  Google Scholar 

  39. King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solids Struct 23(12):1657–1664. https://doi.org/10.1016/0020-7683(87)90116-8

    Article  MATH  Google Scholar 

  40. Zorzi JE, Perottoni CA (2013) Estimating Young’s modulus and Poisson’s ratio by instrumented indentation test. Mater Sci Eng, A 574:25–30. https://doi.org/10.1016/j.msea.2013.03.008

    Article  Google Scholar 

  41. ASTM E2546-15 (2015) Standard practice for instrumented indentation testing. ASTM B Stand 1(December):1–23. https://doi.org/10.1520/E2546-15

    Article  Google Scholar 

  42. ASTM E10–18 (2018) Standard Test Method for Brinell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, www.astm.org

  43. Yoshitake, Hiro, Makino Y, Sugino K, Kageyama H, Suzuki T, Fukuda K, Miyata T (1988) Manufacture and properties of deep head hardened rail, transportation research record 1174, pp 50–56

  44. Pethicai JB, Hutchings R, Oliver WC (1983) Hardness measurement at penetration depths as small as 20 nm. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 48(4):593–606. https://doi.org/10.1080/01418618308234914

    Article  Google Scholar 

  45. Zhang T, Wang S, Wang W (2019) A comparative study on fracture toughness calculation models in spherical indentation tests (SITs) for ductile metals. Int J Mech Sci 160(June):114–128. https://doi.org/10.1016/j.ijmecsci.2019.06.035

    Article  Google Scholar 

  46. Hill R, Storåkers B, Zdunek AB (1989) A theoretical study of the Brinell hardness test. Proc R Soc London A Math Phys Sci 423(1865):301–330. https://doi.org/10.1098/rspa.1989.0056

    Article  MATH  Google Scholar 

  47. Yu F, Jar PYB, Hendry M (2017) Fracture behaviour at the sharp notch tip of high strength rail steels – Influence of stress triaxiality. Eng Fract Mech 178:184–200. https://doi.org/10.1016/j.engfracmech.2017.04.034

    Article  Google Scholar 

  48. ASTM E8 (2010) ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Annu B ASTM Stand 4(C):1–27. https://doi.org/10.1520/E0008

    Article  Google Scholar 

  49. Prakash RV (2010) In-situ damage evaluation using ball indentation test method. In-Situ Damage Evaluation Using Ball Indentation Test Method. In ASME Int Mech Eng Congr and Expo Proc 44496:1–6

  50. ASTM Standard Designation A 1-00 (2018) Standard specification for carbon steel tee rails. Annual Book of ASTM Standards, American Society for Testing and Materials A01.01:1–7. https://doi.org/10.1520/A0001-00R18

  51. Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50(4):681–694

    Article  MATH  Google Scholar 

  52. Pharr GM, Herbert EG, Gao Y (2010) The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res 40:271–292

    Article  Google Scholar 

  53. Voyiadjis GZ, Yaghoobi M (2017) Review of nanoindentation size effect: Experiments and atomistic simulation. Crystals 7(10):321. https://doi.org/10.3390/cryst7100321

  54. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  55. Jock MYN, Decoopman D, Lesage J, Ndjaka JM, Pertuz A (2013) International Journal of Mechanical Sciences Mechanical tensile properties by spherical macroindentation using an indentation strain-hardening exponent. Int J Mech Sci 75:257–264. https://doi.org/10.1016/j.ijmecsci.2013.07.008

    Article  Google Scholar 

  56. Park YJ, Pharr GM (2004) Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 440:246–250. https://doi.org/10.1016/S0040-6090(03)01102-7

    Article  Google Scholar 

  57. Mesarovic SD, Fleck NA (1999) Spherical indentation of elastic–plastic solids. Proc R Soc Lond Ser A Math Phys Eng Sci 455(1987):2707–2728

    Article  MATH  Google Scholar 

  58. Pane I, Blank E (2006) Role of plasticity on indentation behaviour: Relations between surface and subsurface responses. Int J Solids Struct 43(7–8):2014–2036

    Article  MATH  Google Scholar 

  59. Taljat B, Pharr GM (2004) Development of pile-up during spherical indentation of elastic–plastic solids. Int J Solids Struct 41(14):3891–3904

    Article  MATH  Google Scholar 

  60. Zhang C, Zhu Y, Chen Y, Cao N, Chen L (2017) Understanding indentation-induced elastic modulus degradation of ductile metallic materials. Mater Sci Eng A 696:445–452

    Article  Google Scholar 

  61. Tirupataiah Y, Sundararajan G (1991) On the constraint factor associated with the indentation of work-hardening materials with a spherical ball. Metall Trans A 22(10):2375–2384. https://doi.org/10.1007/BF02665003

    Article  Google Scholar 

  62. Leitner A, Maier-Kiener V, Kiener D (2018) Essential refinements of spherical nanoindentation protocols for the reliable determination of mechanical flow curves. Mater Des 146:69–80. https://doi.org/10.1016/j.matdes.2018.03.003

    Article  Google Scholar 

  63. Chen Y, Zhang C, Varé C (2017) An extended GTN model for indentation-induced damage. Comput Mater Sci 128:229–235

    Article  Google Scholar 

  64. Clyne T, Campbell J (2021) Indentation plastometry. In: Testing of the plastic deformation of metals. Cambridge: Cambridge University Press, pp 148–191. https://doi.org/10.1017/9781108943369.009

Download references

Acknowledgements

This research was made possible through the Canadian Rail Research Laboratory (www.carrl.ca). The funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC-IRC 523369-18), the Canadian National Railway, the National Research Council of Canada, and Transport Canada. Dr. Feng Yu also would like to thank the National Natural Science Foundation of China (Grants 51971113) and Natural Science Foundation of Zhejiang Province (LY21A020002) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.I. Okocha.

Ethics declarations

Conflict of Interest Statement

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okocha, S., Yu, F., Jar, P. et al. Indentation Testing Method for Determining Mechanical Properties and Tensile Flow Curve of High-Strength Rail Steels. Exp Mech 63, 839–852 (2023). https://doi.org/10.1007/s11340-023-00939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-00939-w

Keywords

Navigation