Skip to main content
Log in

Dynamic Compressive Test of Saturated Sandstones Under Ambient Sub-Zero Temperature

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Dynamic compressive strength (DCS) of frozen rocks is significant in improving the impact design of rock engineering in cold regions. However, the existing dynamic low temperature testing systems generally cannot achieve a controllable cooling rate or maintain a stable freezing temperature environment, which induces undesirable damage in rocks due to the rapid cooling rate and leads to inaccurate measurement results.

Objective

The objective of this study is to develop a valid dynamic low temperature testing system capable of testing frozen rocks and investigate the effect of ambient sub-zero temperature on the dynamic compressive behaviors of rocks.

Methods

The T2 spectrums obtained by NMR (Nuclear Magnetic Resonance) of two freezing conditions are adopted to prove the necessity of ambient sub-zero temperature for dynamic tests of frozen rocks. A valid dynamic low temperature testing system is developed to perform the dynamic rock test under the ambient sub-zero temperature of dry and saturated white sandstone specimens at 20 °C, -10 °C, and -20 °C. The DCSs (dynamic compressive strength) of dry and saturated porous white sandstones at 20 °C, -10 °C, and -20 °C are obtained and compared.

Results

The dynamic low temperature testing system is valid for performing the dynamic rock test under ambient sub-zero temperature and capturing the dynamic failure process of frozen rock specimens. At 20 °C, -10 °C, and -20 °C, the DCSs of dry sandstones are higher than those of saturated sandstones, and the sub-zero temperature has a different influence on the DCSs of dry and saturated sandstones, indicating that both the phase transition of water and the shrinkage of minerals contribute to the DCS deterioration.

Conclusions

Ambient sub-zero temperature of dynamic testing frozen rocks is necessary to evaluate the significant temperature influence on the dynamic compressive behavior of sandstone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global Planet Change 72(1–2):32–38. https://doi.org/10.1016/j.gloplacha.2010.03.001

    Article  Google Scholar 

  2. Jia H, Zi F, Yang G, Li G, Shen Y, Sun Q, Yang P (2019) Influence of Pore Water (Ice) Content on the Strength and Deformability of Frozen Argillaceous Siltstone. Rock Mech Rock Eng 53(2):967–974. https://doi.org/10.1007/s00603-019-01943-0

    Article  Google Scholar 

  3. Aoki K, Hibiya K, Yoshida T (1990) Storage of refrigerated liquefied gases in rock caverns: characteristics of rock under very low temperatures. Tunn Undergr Space Technol 5(4):319–325. https://doi.org/10.1016/0886-7798(90)90126-5

    Article  Google Scholar 

  4. Wang C, Li S, Zhang T, Zhemin Y (2019) Experimental Study on Mechanical Characteristics and Fracture Patterns of Unfrozen/Freezing Saturated Coal and Sandstone. Materials 12:992. https://doi.org/10.3390/ma12060992

    Article  Google Scholar 

  5. Yamabe T, Neaupane KM (2001) Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition. Int J Rock Mech Min Sci 38(7):1029–1034. https://doi.org/10.1016/s1365-1609(01)00067-3

    Article  Google Scholar 

  6. Inada Y, Yokota K (1984) Some studies of low temperature rock strength. Int J Rock Mech Min Sci 21(3):145–153. https://doi.org/10.1016/0148-9062(84)91532-8

    Article  Google Scholar 

  7. Kodama J-i, T G, Y F, Hagan P (2013) The effects of water content, temperature and loading rate on strength and failure process of frozen rocks. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2013.03.006

    Article  Google Scholar 

  8. Wang T, Sun Q, Jia H, Ren J, Luo T (2021) Linking the mechanical properties of frozen sandstone to phase composition of pore water measured by LF-NMR at subzero temperatures. Bull Eng Geol Environ 80(6):4501–4513. https://doi.org/10.1007/s10064-021-02224-3

    Article  Google Scholar 

  9. Dwivedi RD, Soni A, Goel RK, Dube A (2000) Fracture toughness of rocks under sub-zero temperature conditions. Int J Rock Mech Min Sci 37:1267–1275. https://doi.org/10.1016/S1365-1609(00)00051-4

    Article  Google Scholar 

  10. Davidson GP, Nye JF (1985) A photoelastic study of ice pressure in rock cracks. Cold Reg Sci Tech 11(2):141–153. https://doi.org/10.1016/0165-232X(85)90013-8

    Article  Google Scholar 

  11. Huang SB, Cai YT, Liu YZ, Liu GF (2021) Experimental and Theoretical Study on Frost Deformation and Damage of Red Sandstones with Different Water Contents. Rock Mech Rock Eng 54(8):4163–4181. https://doi.org/10.1007/s00603-021-02509-9

    Article  Google Scholar 

  12. Jia HL, Xiang W, Krautblatter M (2015) Quantifying Rock Fatigue and Decreasing Compressive and Tensile Strength after Repeated Freeze-Thaw Cycles. Permafrost Periglacial Process 26(4):368–377. https://doi.org/10.1002/ppp.1857

    Article  Google Scholar 

  13. Yang R, Fang S, Guo D, Li W, Mi Z (2019) Study on Dynamic Tensile Strength of Red Sandstone Under Impact Loading and Negative Temperature. Geotech Geol Eng 37(5):4527–4537. https://doi.org/10.1007/s10706-019-00927-9

    Article  Google Scholar 

  14. Yang R, Fang S, Li W, Yang Y, Yue Z (2018) Experimental Study on the Dynamic Properties of Three Types of Rock at Negative Temperature. Geotech Geol Eng 37(1):455–464. https://doi.org/10.1007/s10706-018-0622-8

    Article  Google Scholar 

  15. Yang Y, Zhang NN, Wang JG (2021) A Study on the Dynamic Strength Deterioration Mechanism of Frozen Red Sandstone at Low Temperatures. Minerals 11(12). https://doi.org/10.3390/min11121300

  16. Weng L, Wu Z, Liu Q (2020) Dynamic Mechanical Properties of Dry and Water-Saturated Siltstones Under Sub-Zero Temperatures. Rock Mech Rock Eng 53(10):4381–4401. https://doi.org/10.1007/s00603-019-02039-5

    Article  Google Scholar 

  17. Shazly M, Prakash V, Lerch BA (2009) High strain-rate behavior of ice under uniaxial compression. Int J Solids Struct 46(6):1499–1515. https://doi.org/10.1016/j.ijsolstr.2008.11.020

    Article  MATH  Google Scholar 

  18. Cai CZ, Li GS, Huang ZW, Tian SC, Shen ZH, Fu X (2015) Experiment of coal damage due to super-cooling with liquid nitrogen. J Nat Gas Sci Eng 22:42–48. https://doi.org/10.1016/j.jngse.2014.11.016

    Article  Google Scholar 

  19. Han SC, Cheng YF, Gao Q, Yan CL, Han ZY (2018) Experimental study of the effect of liquid nitrogen pretreatment on shale fracability. J Nat Gas Sci Eng 60:11–23. https://doi.org/10.1016/j.jngse.2018.09.023

    Article  Google Scholar 

  20. Qin L, Zhai C, Liu SM, Xu JZ, Tang ZQ, Yu GQ (2016) Failure Mechanism of Coal after Cryogenic Freezing with Cyclic Liquid Nitrogen and Its Influences on Coalbed Methane Exploitation. Energy Fuels 30(10):8567–8578. https://doi.org/10.1021/acs.energyfuels.6b01576

    Article  Google Scholar 

  21. Sha S, Rong G, Chen ZH, Li BW, Zhang ZY (2020) Experimental Evaluation of Physical and Mechanical Properties of Geothermal Reservoir Rock after Different Cooling Treatments. Rock Mech Rock Eng 53(11):4967–4991. https://doi.org/10.1007/s00603-020-02200-5

    Article  Google Scholar 

  22. Lin G, Li M, Chen YL, Zhang JZ, Jiskani IM, Doan DV, Xu L (2021) Dynamic Tensile Mechanical Properties and Fracture Characteristics of Water-Saturated Sandstone under the Freezing Effect. Int J Geomech 21(5):16. https://doi.org/10.1061/(asce)gm.1943-5622.0001999

    Article  Google Scholar 

  23. Zhou Z, E Y, Cai X, Zhang J, Xuan D (2021) Coupled Effects of Water and Low Temperature on Quasistatic and Dynamic Mechanical Behavior of Sandstone. Geofluids 2021:1–12. https://doi.org/10.1155/2021/9926063

    Article  Google Scholar 

  24. Wang T, Sun Q, Jia H, Shen Y, Li G (2022) Fracture Mechanical Properties of Frozen Sandstone at Different Initial Saturation Degrees. Rock Mech Rock Eng 55(6):3235–3252. https://doi.org/10.1007/s00603-022-02830-x

    Article  Google Scholar 

  25. Tice AR, Anderson DM, Sterrett AKF (1981) Unfrozen water contents of submarine permafrost. Eng Geol 18:135–146

    Article  Google Scholar 

  26. Huang SB, Liu QS, Liu YZ, Ye ZY, Cheng AP (2018) Freezing Strain Model for Estimating the Unfrozen Water Content of Saturated Rock under Low Temperature. Int J Geomech 18(2). https://doi.org/10.1061/(asce)gm.1943-5622.0001057

  27. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112. https://doi.org/10.1016/j.ijrmms.2011.10.004

    Article  Google Scholar 

  28. Chiddister JL, Malvern LE (1963) Compression-impact testing of aluminum at elevated temperatures. Exp Mech 3(4):81–90. https://doi.org/10.1007/BF02325890

    Article  Google Scholar 

  29. Lee W-S, Liu C-Y (2006) The effects of temperature and strain rate on the dynamic flow behaviour of different steels. Mater Sci Eng A-Struct Mater Prop Microstruct Process 426(1):101–113. https://doi.org/10.1016/j.msea.2006.03.087

    Article  Google Scholar 

  30. Nasseri MHB, Schubnel A, Young RP (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci 44(4):601–616. https://doi.org/10.1016/j.ijrmms.2006.09.008

    Article  Google Scholar 

  31. Li XP, Qu DX, Luo Y, Ma RQ, Xu K, Wang G (2019) Damage evolution model of sandstone under coupled chemical solution and freeze-thaw process. Cold Reg Sci Tech 162:88–95. https://doi.org/10.1016/j.coldregions.2019.03.012

    Article  Google Scholar 

  32. Liu C, Wang D, Wang Z, Ke B, Li P, Yu S (2021) Dynamic splitting tensile test of granite under freeze-thaw weathering. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2020.106411

    Article  Google Scholar 

  33. Zhang ZY, Wang WK, Gong CC, Wang ZF, Duan L, Yeh TCJ, Yu PY (2019) Evaporation from seasonally frozen bare and vegetated ground at various groundwater table depths in the Ordos Basin. Northwest China Hydrol Process 33(9):1338–1348. https://doi.org/10.1002/hyp.13404

    Article  Google Scholar 

  34. Meng FD, Zhai Y, Li YB, Zhao RF, Li Y, Gao H (2021) Research on the effect of pore characteristics on the compressive properties of sandstone after freezing and thawing. Eng Geol. https://doi.org/10.1016/j.enggeo.2021.106088

    Article  Google Scholar 

  35. Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson (Kolsky) bar system – A review. J Rock Mech Geotech Eng 7(1):27–59. https://doi.org/10.1016/j.jrmge.2014.07.008

    Article  Google Scholar 

  36. Blake OO, Faulkner DR (2016) The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite. J Geophys Res-Solid Earth 121(4):2382–2399. https://doi.org/10.1002/2015jb012310

    Article  Google Scholar 

  37. Wen MY, Si BC, Lu YW, Wang HX (2021) Water recovery rate and isotopic signature of cryogenic vacuum extracted spiked soil water following oven-drying at different temperatures. Hydrol Process 35(6). https://doi.org/10.1002/hyp.14248

  38. Ondrášik M (2002) Freezing expansion and thermodynamics of pore water in rock deterioration. Paper presented at the 9th Congress of the International Association for Engineering Geology and the Environment

  39. Guerin F, Laforte C, Farinas M-I, Perron J (2016) Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg Sci Tech 121:93–99. https://doi.org/10.1016/j.coldregions.2015.10.011

    Article  Google Scholar 

  40. Ding S, Jia HL, Zi F, Dong YH, Yao Y (2020) Frost Damage in Tight Sandstone: Experimental Evaluation and Interpretation of Damage Mechanisms. Materials 13(20). https://doi.org/10.3390/ma13204617

  41. Ozawa H, Kinosita S (1989) Segregated ice growth on a microporous filter. J Colloid Interface Sci 132(1):113–124. https://doi.org/10.1016/0021-9797(89)90222-1

    Article  Google Scholar 

  42. Thompson JMT, Wettlaufer JS (1999) Ice surfaces: macroscopic effects of microscopic structure. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 357(1763):3403–3425. https://doi.org/10.1098/rsta.1999.0500

    Article  Google Scholar 

  43. Deprez M, De Kock T, De Schutter G, Cnudde V (2020) A review on freeze-thaw action and weathering of rocks. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103143

    Article  Google Scholar 

  44. Huang SB, Ye YH, Cui XZ, Cheng AP, Liu GF (2020) Theoretical and experimental study of the frost heaving characteristics of the saturated sandstone under low temperature. Cold Reg Sci Tech. https://doi.org/10.1016/j.coldregions.2020.103036

    Article  Google Scholar 

  45. Zhao X, Lv X, Wang L, Zhu Y, Dong H, Chen W, Li J, Ji B, Ding Y (2015) Research of concrete residual strains monitoring based on WLI and FBG following exposure to freeze-thaw tests. Cold Reg Sci Tech 116:40–48. https://doi.org/10.1016/j.coldregions.2015.04.007

    Article  Google Scholar 

  46. Weng L, Wu Z, Liu Q, Chu Z, Zhang S (2021) Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2021.104757

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants # 52079091 and #12172253, and Tianjin Research Innovation Project for Postgraduate Students under Grants #2021YJSS029. This paper is supported by the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). The opening project number is KFJJ22-18M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yang, Y., Li, X. et al. Dynamic Compressive Test of Saturated Sandstones Under Ambient Sub-Zero Temperature. Exp Mech 63, 191–200 (2023). https://doi.org/10.1007/s11340-022-00908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-022-00908-9

Keywords

Navigation