Skip to main content
Log in

A Compact ESPI System for Measuring 3D Displacements

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The ESPI technique provides a sensitive method for measuring surface displacements. However, typical interferometers for 3-D measurements are complex and require numerous optical components and sophisticated lasers.

Objective

The objective here is to design and demonstrate a relatively simple 3-D interferometer that uses diffraction gratings instead of beam splitters. This feature equalizes all optical path lengths and makes it possible to use a simple diode laser as light source.

Results

Two main in-plane ESPI interferometers with different incidence angles are combined to form an additional four sensitivity vectors capable of measuring in-plane and out-of-plane displacements. Thus, a total of 6 independent measurements are available. A prototype device was designed and built to test the 3-D displacement measurement capabilities. The interferometer was shown to be capable of measuring simultaneous 3-D displacements with accuracy in the range 0.01 to 0.05 µm in the X and Y axes and 0.03 to 0.09 µm in the Z axis.

Conclusions

The results demonstrate the effectiveness of the proposed 3-D interferometer design. The use of parallelogram beam geometry or of specific current and temperature controls are effective to accommodate the low coherence of a laser diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mujika F (2013) Stress and displacement fields in tensile tests of multidirectional laminates with flexible clamped ends. J Compos Mater 47:3467–3486. https://doi.org/10.1177/0021998312466905

    Article  Google Scholar 

  2. Viotti MR, Sutério R, Albertazzi A, Kaufmann GH (2004) Residual stress measurement using a radial in-plane speckle interferometer and laser annealing: Preliminary results. Opt Lasers Eng 42:71–84. https://doi.org/10.1016/S0143-8166(03)00069-1

    Article  Google Scholar 

  3. Aswendt P, Schmidt CD, Zielke D, Schubert S (2003) ESPI solution for non-contacting MEMS-on-wafer testing. Opt Lasers Eng 40:501–515. https://doi.org/10.1016/S0143-8166(02)00086-6

    Article  Google Scholar 

  4. Moreno V, Vázquez-Vázquez C, Gallas M, Crespo J (2011) Speckle shearing pattern interferometry to assess mechanical strain in the human mandible jaw bone under physiological stress, vol. 8001. In: International Conference on Applications of Optics and Photonics, Braga, Portugal, p 800131. https://doi.org/10.1117/12.892165

  5. Ferretti D, Rossi M, Royer-Carfagni G (2011) An ESPI experimental study on the phenomenon of fracture in glass. Is it brittle or plastic? J Mech Phys Solids 59:1338–1354. https://doi.org/10.1016/j.jmps.2011.04.008

    Article  Google Scholar 

  6. Cordero RR, François M, Lira I, Vial-Edwards C (2005) Whole-field analysis of uniaxial tensile tests by Moiré interferometry. Opt Lasers Eng 43:919–936. https://doi.org/10.1016/j.optlaseng.2004.10.002

    Article  Google Scholar 

  7. Cao SY, Chen JF, Pan JW, Sun N (2007) ESPI Measurement of Bond-Slip Relationships of FRP-Concrete Interface. J Compos Constr 11:149–160. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(149)

    Article  Google Scholar 

  8. Vasco-Olmo JM, Díaz FA, Patterson EA (2016) Experimental evaluation of shielding effect on growing fatigue cracks under overloads using ESPI. Int J Fatigue 83:117–126. https://doi.org/10.1016/j.ijfatigue.2015.10.003

    Article  Google Scholar 

  9. Leach R (2014) Fundamental Principles of Engineering Nanometrology, 2nd edn. Elsevier Inc., Oxford

    Google Scholar 

  10. Rastogi PK (2000) Digital Speckle Pattern Interferometry and Related Techniques. Wiley - VCH, New York

    Google Scholar 

  11. Shahar R, Zaslansky P, Barak M et al (2007) Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech 40:252–264. https://doi.org/10.1016/j.jbiomech.2006.01.021

    Article  Google Scholar 

  12. Willemann DP, Fantin A, Albertazzi Gonçalves JA (2010) Defect assessment of bonded joints of composite tubes using shearography. Speckle 2010 Opt Metrol 7387:73870J. https://doi.org/10.1117/12.870680

    Article  Google Scholar 

  13. Hung YY (1999) Applications of digital shearography for testing of composite structures. Compos Part B Eng 30:765–773. https://doi.org/10.1016/S1359-8368(99)00027-X

    Article  Google Scholar 

  14. Yang L, Xie X, Zhu L et al (2014) Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement. Chinese J Mech Eng (English Ed 27:1–13. https://doi.org/10.3901/CJME.2014.01.001

    Article  Google Scholar 

  15. Ettemeyer A (2003) Strain measurement by three-dimensional electronic speckle pattern interferometry: potentials, limitations, and applications. Opt Eng 42:1257. https://doi.org/10.1117/1.1566781

    Article  Google Scholar 

  16. Wykes C, Flanagan M (1987) The use of a diode laser in an ESPI system. Opt Laser Technol 19:37–39. https://doi.org/10.1016/0030-3992(87)90010-7

    Article  Google Scholar 

  17. Gülker G, Hinsch K, Hölscher C et al (1990) Electronic speckle pattern interferometry system for in situ deformation monitoring on buildings. Opt Eng 29:816–820. https://doi.org/10.1117/12.55648

    Article  Google Scholar 

  18. Albertazzi JA, Kanda C, Borges MR, Hrebabetzky F (2001) A portable residual stresses measurement device using ESPI and a radial in-plane interferometer. Laser Metrol Precis Meas Insp Ind 4420:112–122. https://doi.org/10.1117/12.439201

    Article  Google Scholar 

  19. Viotti MR, Kapp WA, Albertazzi Gonçalves JA (2010) A portable optical DSPI strain sensor with radial sensitivity using an axis-symmetrical DOE. Speckle 2010 Opt Metrol 7387:73870B. https://doi.org/10.1117/12.869665

    Article  Google Scholar 

  20. Bova M, Bruno L, Pagnotta L, Poggialini A (2009) Measuring full displacement fields on scattering surfaces by a portable low-cost interferometer. WSEAS Trans Appl Theor Mech 4:53–63

    Google Scholar 

  21. Schajer GS, Zhang Y, Melamed S (2015) In-plane ESPI using an achromatic interferometer with low-coherence laser source. Opt Lasers Eng 67:116–121. https://doi.org/10.1016/j.optlaseng.2014.11.008

    Article  Google Scholar 

  22. Heikkinen JJ, Schajer GS (2018) Low-Coherence light source design for ESPI in-plane displacement measurements. Opt Lasers Eng 100:77–81. https://doi.org/10.1016/j.optlaseng.2017.07.013

    Article  Google Scholar 

  23. Saleh BEA, Teich MC (2019) Fundamentals of Photonics, 3rd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  24. da Silva FAA, Willemann DP, Fantin AV et al (2018) Evaluation of a novel compact shearography system with DOE configuration. Opt Lasers Eng 104:90–99. https://doi.org/10.1016/j.optlaseng.2017.06.021

    Article  Google Scholar 

  25. Creath K (1985) Phase-shifting speckle interferometry. Appl Opt 24:3053. https://doi.org/10.1364/ao.24.003053

    Article  Google Scholar 

  26. Schmitt DR, Hunt RW (1997) Optimization of fringe pattern calculation with direct correlations in speckle interferometry. Appl Opt 36:8848. https://doi.org/10.1364/ao.36.008848

    Article  Google Scholar 

  27. Montgomery DC, Runger GC (2002) Applied Statistics and Probability for Engineers, 3rd edn. Wiley & Sons, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Schajer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broetto, F.Z., Schajer, G.S. A Compact ESPI System for Measuring 3D Displacements. Exp Mech 62, 471–482 (2022). https://doi.org/10.1007/s11340-021-00802-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00802-w

Keywords

Navigation