Skip to main content
Log in

Effects of Red Blood Cell Sickling on Right Ventricular Afterload in vivo

  • Sp Iss: Experimental Advances in Cardiovascular Biomechanics
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Hemolysis in sickle cell disease (SCD) releases cell free hemoglobin, which scavenges nitric oxide (NO), leading to pulmonary vascular vasoconstriction, increased pulmonary vascular resistance (PVR), and the development of PH. However, PVR is only one component of right ventricular (RV) afterload. Whether sickled red blood cells increase the total RV afterload, including compliance and wave reflections, is unclear.

Objective

Patients with SCD and pulmonary hypertension (PH) have a significantly increased risk of sudden death compared to patients with SCD alone. Sickled red blood cells (RBCs) are fragile and lyse easily. Here, we sought to determine the acute effects of SCD RBCs and increased cell free hemoglobin on RV afterload.

Methods

Main pulmonary artery pressures and flows were measured in C57BL6 mice before and after exchanges of whole blood (~200 uL, Hct = 45%) with an equal volume of SCD RBCs in plasma (Hct = 45%) or cell free hemoglobin (Hb+) in solution. After transfusions, animals were additionally stressed with acute hypoxia (AH; 10% O2).

Results

SCD RBCs increased PVR only compared to control RBCs; cell free hemoglobin increased PVR and wave reflections. These increases in RV afterload increased further with AH.

Conclusions

The release of cell free hemoglobin from fragile SCD RBCs in vivo increases the total RV afterload and may impair RV function more than the SCD RBCs themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Organization W.H (2006) Sickle-cell anaemia: Report by the Secretariat. 59th World Health Assembly. 11

  2. Machado RF, Farber HW (2013) Pulmonary hypertension associated with chronic hemolytic anemia and other blood disorders. Clin Chest Med 34(4):739–752

    Google Scholar 

  3. Maciaszek JL, Andemariam B, Lykotrafitis G (2011) Microelasticity of red blood cells in sickle cell disease. J Strain Anal Eng Des 46(5):368–379

    Google Scholar 

  4. Bunn HF, Nathan DG, Dover GJ, Hebbel RP, Platt OS, Rosse WF, Ware RE (2010) Pulmonary hypertension and nitric oxide depletion in sickle cell disease. Blood 116(5):687–692

    Google Scholar 

  5. Gaggar A, Patel RP (2016) There is blood in the water: hemolysis, hemoglobin, and heme in acute lung injury. Am J Physiol Lung Cell Mol Physiol 311(4):L714–l718

    Google Scholar 

  6. Ataga KI, Sood N, de Gent G, Kelly E, Henderson AG, Jones S, Strayhorn D, Lail A, Lieff S, Orringer EP (2004) Pulmonary hypertension in sickle cell disease. Am J Med 117(9):665–669

  7. De Castro LM et al (2008) Pulmonary hypertension associated with sickle cell disease: clinical and laboratory endpoints and disease outcomes. Am J Hematol 83(1):19–25

    Google Scholar 

  8. Gordeuk VR, Castro OL, Machado RF (2016) Pathophysiology and treatment of pulmonary hypertension in sickle cell disease. Blood 127(7):820–828

    Google Scholar 

  9. Haque AK, Gokhale S, Rampy BA, Adegboyega P, Duarte A, Saldana MJ (2002) Pulmonary hypertension in sickle cell hemoglobinopathy: a clinicopathologic study of 20 cases. Hum Pathol 33(10):1037–1043

    Google Scholar 

  10. Ander S, MacLennan M, Bentil S, Leavitt B, Chesler N (2005) Pressure-induced vector transport in human saphenous vein. Ann Biomed Eng 33(2):202–208

    Google Scholar 

  11. Charache S (1994) Sickle cells and sudden death. J Lab Clin Med 124(4):473–474

  12. Castro O, Hoque M, Brown BD (2003) Pulmonary hypertension in sickle cell disease: cardiac catheterization results and survival. Blood 101(4):1257–1261

    Google Scholar 

  13. Fonseca GH et al (2012) Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur Respir J 39(1):112–118

    Google Scholar 

  14. Mushemi-Blake S, Melikian N, Drasar E, Bhan A, Lunt A, Desai SR, Greenough A, Monaghan MJ, Thein SL, Shah AM (2015) Pulmonary Haemodynamics in sickle cell disease are driven predominantly by a high-output state rather than elevated pulmonary vascular resistance: a prospective 3-dimensional echocardiography/Doppler study. PLoS One 10(8):e0135472

    Google Scholar 

  15. Mehari A, Gladwin MT, Tian X, Machado RF, Kato GJ (2012) Mortality in adults with sickle cell disease and pulmonary hypertension. Jama 307(12):1254–1256

    Google Scholar 

  16. Parent F, Bachir D, Inamo J, Lionnet F, Driss F, Loko G, Habibi A, Bennani S, Savale L, Adnot S, Maitre B, Yaïci A, Hajji L, O'Callaghan DS, Clerson P, Girot R, Galacteros F, Simonneau G (2011) A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med 365(1):44–53

    Google Scholar 

  17. Leight L et al (1954) Hemodynamic studies in sickle cell anemia. Circulation 10(5):653–662

    Google Scholar 

  18. Fonseca G, Souza R (2015) Pulmonary hypertension in sickle cell disease. Curr Opin Pulm Med 21(5):432–437

    Google Scholar 

  19. Machado RF, Barst RJ, Yovetich NA, Hassell KL, Kato GJ, Gordeuk VR, Gibbs JSR, Little JA, Schraufnagel DE, Krishnamurti L, Girgis RE, Morris CR, Rosenzweig EB, Badesch DB, Lanzkron S, Onyekwere O, Castro OL, Sachdev V, Waclawiw MA, Woolson R, Goldsmith JC, Gladwin MT, on behalf of the walk-PHaSST Investigators and Patients (2011) Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood 118(4):855–864

    Google Scholar 

  20. Nauser TD, Stites SW (2001) Diagnosis and treatment of pulmonary hypertension. Am Fam Physician 63(9):1789–1798

    Google Scholar 

  21. Potoka KP, Gladwin MT (2015) Vasculopathy and pulmonary hypertension in sickle cell disease. Am J Physiol Lung Cell Mol Physiol 308(4):L314–L324

    Google Scholar 

  22. Noguchi CT, Schechter AN, Rodgers GP (1993) Sickle cell disease pathophysiology. Baillieres Clin Haematol 6(1):57–91

    Google Scholar 

  23. Guarda CCD, Santiago RP, Fiuza LM, Aleluia MM, Ferreira JRD, Figueiredo CVB, Yahouedehou SCMA, Oliveira RM, Lyra IM, Gonçalves MS (2017) Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia. Expert Rev Hematol 10(6):533–541

    Google Scholar 

  24. Aessopos A, Farmakis D, Tsironi M, Diamanti-Kandarakis E, Matzourani M, Fragodimiri C, Hatziliami A, Karagiorga M (2007) Endothelial function and arterial stiffness in sickle-thalassemia patients. Atherosclerosis 191(2):427–432

    Google Scholar 

  25. Ranque B, Menet A, Boutouyrie P, Diop IB, Kingue S, Diarra M, N’Guetta R, Diallo D, Diop S, Diagne I, Sanogo I, Tolo A, Chelo D, Wamba G, Gonzalez JP, Abough’elie C, Diakite CO, Traore Y, Legueun G, Deme-Ly I, Faye BF, Seck M, Kouakou B, Kamara I, le Jeune S, Jouven X (2016) Arterial stiffness impairment in sickle cell disease associated with chronic vascular complications: the multinational African CADRE study. Circulation 134(13):923–933

    Google Scholar 

  26. Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120(11):992–1007

    Google Scholar 

  27. Lammers S, Scott D, Hunter K, Tan W, Shandas R, Stenmark KR (2012) Mechanics and function of the pulmonary vasculature: implications for pulmonary vascular disease and right ventricular function. Compr Physiol 2(1):295–319

    Google Scholar 

  28. Schreier DA, Forouzan O, Hacker TA, Sheehan J, Chesler N (2016) Increased red blood cell stiffness increases pulmonary vascular resistance and pulmonary arterial pressure. J Biomech Eng 138(2):021012. https://doi.org/10.1115/1.4032187

  29. Schreier DA, Hacker TA, Hunter K, Eickoff J, Liu A, Song G, Chesler N (1985) Impact of increased hematocrit on right ventricular afterload in response to chronic hypoxia. J Appl Physiol 117(8):833–839. https://doi.org/10.1152/japplphysiol.00059.2014

  30. Tabima DM, Roldan-Alzate A, Wang Z, Hacker TA, Molthen RC, Chesler NC (2012) Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia. J Biomech 45(5):799–804

    Google Scholar 

  31. Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 1(2):212–223

    Google Scholar 

  32. Morel FM, Baker RF, Wayland H (1971) Quantitation of human red blood cell fixation by glutaraldehyde. J Cell Biol 48(1):91–100

    Google Scholar 

  33. Schaer DJ, Buehler PW (2013) Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med 3(6)

  34. Alvarado AM, Ward KM, Muntz DS, Thompson AA, Rodeghier M, Fernhall B, Liem RI (2015) Heart rate recovery is impaired after maximal exercise testing in children with sickle cell anemia. J Pediatr 166(2):389–93 e1

    Google Scholar 

  35. Mitchell GF et al (1994) Measurement of aortic input impedance in rats. Am J Phys 267(5 Pt 2):H1907–H1915

    Google Scholar 

  36. Westerhof N et al (1972) Forward and backward waves in the arterial system. Cardiovasc Res 6(6):648–656

    Google Scholar 

  37. Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV (2001) Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281(2):H895–H902

    Google Scholar 

  38. Nie M, Kobayashi H, Sugawara M, Tomita T, Ohara K, Yoshimura H (2001) Helium inhalation enhances vasodilator effect of inhaled nitric oxide on pulmonary vessels in hypoxic dogs. Am J Physiol Heart Circ Physiol 280(4):H1875–H1881

    Google Scholar 

  39. Smolich JJ, Mynard JP, Penny DJ (2008) Simultaneous pulmonary trunk and pulmonary arterial wave intensity analysis in fetal lambs: evidence for cyclical, midsystolic pulmonary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 294(5):R1554–R1562

    Google Scholar 

  40. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension 43(6):1239–1245

    Google Scholar 

  41. Brandao MM et al (2003) Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur J Haematol 70(4):207–211

    Google Scholar 

  42. Higgins JM, Eddington DT, Bhatia SN, Mahadevan L (2007) Sickle cell vasoocclusion and rescue in a microfluidic device. Proc Natl Acad Sci USA 104(51):20496–20500

    Google Scholar 

  43. Hiruma H et al (1995) Contributions of sickle hemoglobin polymer and sickle cell membranes to impaired filterability. Am J Phys 268(5 Pt 2):H2003–H2008

    Google Scholar 

  44. Noguchi CT, Torchia DA, Schechter AN (1980) Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. Proc Natl Acad Sci USA 77(9):5487–5491

    Google Scholar 

  45. Wood DK et al (2012) A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci Transl Med 4(123):123ra26

    Google Scholar 

  46. Ballas SK, Mohandas N (2004) Sickle red cell microrheology and sickle blood rheology. Microcirculation 11(2):209–225

    Google Scholar 

  47. Eaton WA, Hofrichter J (1990) Sickle cell hemoglobin polymerization. Adv Protein Chem 40:63–279

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Ron R. Magness for the use of the viscometer. We would also like to thank Gaoussou Diarra for his surgical expertise performing the in vivo hemodynamic measurements.

Funding

This study is supported by National Institutes of Health (NIH), NIH R21-HL086939 (NCC) and NIH F31 HL128088–01 (DAS).

Author information

Authors and Affiliations

Authors

Contributions

David Schreier1,2,3,4, Timothy Hacker1,2,4, Diana Tabima1,4, Manu O. Platt1,4, Naomi Chesler1,4

1. Designed research.

2. Performed research.

3. Analyzed data.

4. Wrote the paper.

Corresponding author

Correspondence to N. C. Chesler.

Ethics declarations

Conflict of Interest

No conflicts of interest, financial or otherwise, are declared by the author(s). The University of Wisconsin-Madison Institutional Animal Care and Use Committee approved all procedures.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreier, D.A., Hacker, T.A., Tabima, D.M. et al. Effects of Red Blood Cell Sickling on Right Ventricular Afterload in vivo. Exp Mech 61, 229–235 (2021). https://doi.org/10.1007/s11340-020-00669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00669-3

Keywords

Navigation