Skip to main content
Log in

Tricuspid Chordae Tendineae Mechanics: Insertion Site, Leaflet, and Size-Specific Analysis and Constitutive Modelling

  • Sp Iss: Experimental Advances in Cardiovascular Biomechanics
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background: Tricuspid valve chordae tendineae play a vital role in our cardiovascular system. They function as “parachute cords” to the tricuspid leaflets to prevent prolapse during systole. However, in contrast to the tricuspid annulus and leaflets, the tricuspid chordae tendineae have received little attention. Few previous studies have described their mechanics and their structure-function relationship. Objective: In this study, we aimed to quantify the mechanics of tricuspid chordae tendineae based on their leaflet of origin, insertion site, and size. Methods: Specifically, we uniaxially stretched 53 tricuspid chordae tendineae from sheep and recorded their stress-strain behavior. We also analyzed the microstructure of the tricuspid chordae tendineae based on two-photon microscopy and histology. Finally, we compared eight different hyperelastic constitutive models and their ability to fit our data. Results: We found that tricuspid chordae tendineae are highly organized collageneous tissues, which are populated with cells throughout their thickness. In uniaxial stretching, this microstructure causes the classic J-shaped nonlinear stress-strain response known from other collageneous tissues. We found differences in stiffness between tricuspid chordae tendineae from the anterior, posterior, or septal leaflets only at small strains. Similarly, we found significant differences based on their insertion site or size also only at small strains. Of the models we fit to our data, we recommend the Ogden two-parameter model. This model fit the data excellently and required a minimal number of parameters. For future use, we identified and reported the Ogden material parameters for an average data set. Conclusion: The data presented in this study help to explain the mechanics and structure-function relationship of tricuspid chordae tendineae and provide a model recommendation (with parameters) for use in computational simulations of the tricuspid valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sacks MS, Yoganathan AP (2007) . Philos Trans R Soc B: Biol Sciences 362 (1484):1369. https://doi.org/10.1098/rstb.2007.2122

    Article  Google Scholar 

  2. Meador WD, Mathur M, Rausch M (2018) Advances in Heart Valve Biomechanics, pp 105–114. https://doi.org/10.1007/978-3-030-01993-8_5

  3. Cevasco M, Shekar PS (2017) . Ann Cardiothoracic Surg 6(3):275

    Article  Google Scholar 

  4. Mascherbauer J, Maurer G (2010) . Eur Heart J 31(23):2841. https://doi.org/10.1093/eurheartj/ehq303

    Article  Google Scholar 

  5. Oliveira DC, Oliveira CG (2019) . Cardiol Res 10(4):199. https://doi.org/10.14740/cr874

    Article  Google Scholar 

  6. Lee CH, Laurence D, Ross C, Kramer KE, Babu AR, Johnson EL, Hsu MC, Aggarwal A, Mir A, Burkhart HM, Towner R, Baumwart R, Wu Y, Lee CH, Laurence D, Ross C, Kramer KE, Babu AR, Johnson EL, Hsu MC, Aggarwal A, Mir A, Burkhart HM, Towner R, Baumwart R, Wu Y (2019) . Bioengineering 6(2):47. https://doi.org/10.3390/bioengineering6020047

    Article  Google Scholar 

  7. Stevanella M, Votta E, Lemma M, Antona C, Redaelli A (2010) . Med Eng Phys 32(10):1213. https://doi.org/10.1016/j.medengphy.2010.08.013

    Article  Google Scholar 

  8. Kong F, Pham T, Martin C, McKay R, Primiano C, Hashim S, Kodali S, Sun W (2018) . Ann Biomed Eng 46(8):1112. https://doi.org/10.1007/s10439-018-2024-8

    Article  Google Scholar 

  9. Dabiri Y, Yao J, Sack KL, Kassab GS, Guccione JM (2019) . Mech Res Commun 97:96. https://doi.org/10.1016/j.mechrescom.2019.04.009

    Article  Google Scholar 

  10. Singh-Gryzbon S, Sadri V, Toma M, Pierce EL, Wei ZA, Yoganathan AP (2019) Annals of Biomedical Engineering. https://doi.org/10.1007/s10439-019-02243-y

  11. Lim KO (1980) . Jpn J Physiol 30(3):455. https://doi.org/10.2170/jjphysiol.30.455

    Article  Google Scholar 

  12. Lim KO, Boughner DR, Perkins DG (1983) . Jpn Heart J 24(4):539. https://doi.org/10.1536/ihj.24.539

    Article  Google Scholar 

  13. Pokutta-Paskaleva A, Sulejmani F, DelRocini M, Sun W (2019) . Acta Biomaterialia 85:241. https://doi.org/10.1016/j.actbio.2018.12.029

    Article  Google Scholar 

  14. Dixon JA, Spinale FG (2009) . Circ Heart Fail 2(3):262. https://doi.org/10.1161/CIRCHEARTFAILURE.108.814459

    Article  Google Scholar 

  15. Meador WD, Mathur M, Sugerman GP, Jazwiec T, Malinowski M, Bersi MR, Timek TA, Rausch M (2019) Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2019.11.039

  16. Meador WD, Sugerman GP, Story HM, Seifert AW, Bersi MR, Tepole AB, Rausch M (2019) Acta Biomaterialia (xxxx). https://doi.org/10.1016/j.actbio.2019.10.020

  17. Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten CVC, van de Vosse FN, Unser M, Stergiopulos N (2012) . Biomech Model Mechanobiol 11(3-4):461

  18. Ogden RW, Saccomandi G, Sgura I (2004) . Comput Mech 34(6):484. https://doi.org/10.1007/s00466-004-0593-y

    Article  Google Scholar 

  19. Singmann H, Bolker B, Westfall J (2015) Analysis of Factorial Experiments, package ‘afex’

  20. Enriquez-Sarano M, Messika-Zeitoun D, Topilsky Y, Tribouilloy C, Benfari G, Michelena H (2019) Progress in cardiovascular diseases

  21. Mathur M, Jazwiec T, Meador WD, Malinowski M, Goehler M, Ferguson H, Timek TA, Rausch M (2019) Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-019-01148-y

  22. Khoiy K, Biswas D, Decker TN, Asgarian KT, Loth F, Amini R (2016) J Biomech Eng 138(11):111006. https://doi.org/10.1115/1.4034621

  23. Pham T, Sulejmani F, Shin E, Wang D, Sun W (2017) . Acta Biomater 54:345. https://doi.org/10.1016/j.actbio.2017.03.026

    Article  Google Scholar 

  24. Laurence D, Ross C, Jett S, Johns C, Echols A, Baumwart R, Towner R, Liao J, Bajona P, Wu Y, Lee CH (2019) . J Biomech 83:16. https://doi.org/10.1016/j.jbiomech.2018.11.015

    Article  Google Scholar 

  25. Spinner EM, Shannon P, Buice D, Jimenez JH, Veledar E, Del Nido PJ, Adams DH, Yoganathan AP (2011) . Circulation 124(8):920. https://doi.org/10.1161/CIRCULATIONAHA.110.003897

    Article  Google Scholar 

  26. Rausch M, Malinowski M, Meador WD, Wilton P, Khaghani A, Timek TA (2018) . Cardiovascul Eng Technol 9(3):365. https://doi.org/10.1007/s13239-018-0367-9

    Article  Google Scholar 

  27. Malinowski M, Jazwiec T, Goehler M, Quay M, Bush J, Jovinge S, Rausch M, Timek T (2018) Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1016/j.jtcvs.2018.08.110

  28. Rausch M, Mathur M, Meador WD (2019) GAMM-Mitteilungen, pp e201900012. https://doi.org/10.1002/gamm.201900012

  29. Rausch M (2020) Current opinion in biomedical engineering

  30. Troxler LG, Spinner EM, Yoganathan AP (2012) . J Biomech 45(6):1084

    Article  Google Scholar 

  31. Humphrey JD (2003) . Proc R Soc Math Phys Eng Sci 459(2029):3. https://doi.org/10.1098/rspa.2002.1060

    Article  MathSciNet  Google Scholar 

  32. Mow VC, Hou JS, Owens JM, Ratcliffe A (1990) Biomechanics of Diarthrodial Joints. Springer, New York, pp 215–260. https://doi.org/10.1007/978-1-4612-3448-7_8

  33. Fung YC (1967) . Amer J Physiol 213(6):1532. https://doi.org/10.1152/ajplegacy.1967.213.6.1532

    Article  Google Scholar 

  34. Holzapfel GA, Gasser TC, Ogden RW (2000) . J Elast 61(1/3):1

    Article  Google Scholar 

  35. Gasser TC, Ogden RW, Holzapfel GA (2006) . J R Soc Interface 3 (6):15. https://doi.org/10.1098/rsif.2005.0073

    Article  Google Scholar 

  36. Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) J Biomech Eng 134(1):011005. https://doi.org/10.1115/1.4005694

  37. Dassault Systemes (SIMULIA) (2014) Providence, RI. Abaqus 6.14 Documentation

  38. Duginski GA, Ross C, Laurence D, Johns CH, Lee CH (2020) J Mech Behav Biomed Mater 101(July 2019). https://doi.org/10.1016/j.jmbbm.2019.103438

  39. Salinas SD, Clark MM, Amini R (2019) Journal of Biomechanics (xxxx), pp 109462. https://doi.org/10.1016/j.jbiomech.2019.109462

Download references

Acknowledgments

This work was supported by the American Heart Association under Award 18CDA34120028 and the National Institutes of Health under Award 1 F31 HL145976-01A1. Dr. Rausch has a speaking agreement with Edwards Lifesciences. No other author has any conflicts to report. We performed all experimental and animal procedures in congruence with the Guide for Care and Use of Laboratory Animals prepared by the National Academy of Science and published by the National Institutes of Health, and the Principles of Laboratory Animal Care, formulated by the National Society for Medical Research. The study protocol was approved by our local Institutional Animal Care and Use Committee (Spectrum Health IACUC No.: 18-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Rausch.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 Classification of tricuspid chordae tendineae samples (n = 53) by leaflet, insertion site, and size

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, K.J., Mathur, M., Meador, W.D. et al. Tricuspid Chordae Tendineae Mechanics: Insertion Site, Leaflet, and Size-Specific Analysis and Constitutive Modelling. Exp Mech 61, 19–29 (2021). https://doi.org/10.1007/s11340-020-00594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00594-5

Keywords

Navigation