Strain Evolution in Lithium Manganese Oxide Electrodes


Lithium manganese oxide, LiMn2O4 (LMO) is a promising cathode material, but is hampered by significant capacity fade due to instability of the electrode-electrolyte interface, manganese dissolution into the electrolyte and subsequent mechanical degradation of the electrode. In this work, electrochemically-induced strains in composite LMO electrodes are measured using the digital image correlation (DIC) technique and compared with electrochemical impedance spectroscopy (EIS) measurements of surface resistance for different scan rates. Distinct, irreversible strain variations are observed during the first delithiation cycle. The changes in strain and surface resistance are highly sensitive to the electrochemical changes occurring during the first cycle and correlate with prior reports of the removal of the native surface layer and the formation of cathode-electrolyte interface layer on the electrode surface. A large capacity fade is observed with increasing cycle number at high scan rates. Interestingly, the total capacity fade scales proportionately to the strain generated after each lithiation and delithiation cycle. The simultaneous reduction in capacity and strain is attributed to chemo-mechanical degradation of the electrode. The in situ strain measurements provide new insight into the electrochemical-induced volumetric changes in LMO electrodes with progressing cycling and may provide guidance for materials-based strategies to reduce strain and capacity fade.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Tavassol H, Jones EMC, Sottos NR, Gewirth AA (2016) Electrochemical stiffness in lithium-ion batteries. Nat Mater 15:1182–1187.

    Article  Google Scholar 

  2. 2.

    Çapraz ÖÖ, Bassett KL, Gewirth AA, Sottos NR (2016) Electrochemical stiffness changes in lithium manganese oxide electrodes. Adv Energy Mater:1601778–1601777.

  3. 3.

    Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for li-ion batteries. Prog Mater Sci 63:58–116.

    Article  Google Scholar 

  4. 4.

    Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144:L208–L210.

    Article  Google Scholar 

  5. 5.

    Zhang S, Ding MS, Xu K et al (2001) Understanding solid electrolyte Interface film formation on graphite electrodes. Electrochem Solid-State Lett 4:A206–A208.

    Article  Google Scholar 

  6. 6.

    Jones EMC, Çapraz ÖÖ, White SR, Sottos NR (2016) Reversible and irreversible deformation mechanisms of composite graphite electrodes in lithium-ion batteries. J Electrochem Soc 163:A1965–A1974.

    Article  Google Scholar 

  7. 7.

    Vidu R, Quinlan FT, Stroeve P (2002) Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte. Ind Eng Chem Res 41:6546–6554.

    Article  Google Scholar 

  8. 8.

    Aurbach D (1998) Common electroanalytical behavior of li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034.

    Article  Google Scholar 

  9. 9.

    Das SR, Majumder SB, Katiyar RS (2005) Kinetic analysis of the li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films. J Power Sour.

  10. 10.

    Beaulieu LY, Eberman KW, Turner RL et al (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4:A137–A140.

    Article  Google Scholar 

  11. 11.

    Liu XH, Huang JY (2011) In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ Sci 4:3844–3860.

    Article  Google Scholar 

  12. 12.

    Timmons A, Dahn JR (2006) In situ optical observations of particle motion in alloy negative electrodes for li-ion batteries. J Electrochem Soc 153:A1206–A1210.

    Article  Google Scholar 

  13. 13.

    Qi Y, Harris SJ (2010) In situ observation of strains during Lithiation of a graphite electrode. J Electrochem Soc 157:A741–A747.

    Article  Google Scholar 

  14. 14.

    Jones EMC, Silberstein MN, White SR, Sottos NR (2014) In situ measurements of strains in composite battery electrodes during electrochemical cycling. Exp Mech 54:971–985.

    Article  Google Scholar 

  15. 15.

    Gonzalez J, Sun K, Huang M et al (2014) Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries. J Power Sour 269:334–343.

    Article  Google Scholar 

  16. 16.

    Eastwood DS, Yufit V, Gelb J et al (2013) Lithiation-induced dilation mapping in a lithium-ion battery electrode by 3D X-ray microscopy and digital volume correlation. Adv Energy Mater 4:1300506–1300507.

    Article  Google Scholar 

  17. 17.

    Wang H, Jang Il Y, Huang B et al (1999) TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J Electrochem Soc 146:473–480

    Article  Google Scholar 

  18. 18.

    Dokko K, Nishizawa M, Horikoshi S, Itoh T (2000) In situ observation of LiNiO2 single-particle fracture during li-ion extraction and insertion. Electrochem solid-state Lett 3:125–127

    Article  Google Scholar 

  19. 19.

    Zhang Z, Chen Z, Wang G et al (2016) Dual-doping to suppress cracking in spinel LiMn2O4: a joint theoretical and experimental study. Phys Chem Chem Phys 18:6893–6900.

    Article  Google Scholar 

  20. 20.

    Wang D, Wu X, Wang Z, Chen L (2005) Cracking causing cyclic instability of LiFePO4 cathode material. J Power Sour 140:125–128.

    Article  Google Scholar 

  21. 21.

    Julien, CM, Mauger A, Zaghib K, Groult, H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132-154,

  22. 22.

    Xu X, Lee S, Jeong S et al (2013) Recent progress on nanostructured 4 V cathode materials for li-ion batteries for mobile electronics. Mater Today 16:487–495.

    Article  Google Scholar 

  23. 23.

    Hausbrand R, Cherkashinin G, Ehrenberg H et al (2015) Fundamental degradation mechanisms of layered oxide li-ion battery cathode materials: methodology, insights and novel approaches. Materials Science & Engineering B 192:3–25.

    Article  Google Scholar 

  24. 24.

    Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced li-ion batteries: a review. Energy Environ Sci 4:3243–3220.

    Article  Google Scholar 

  25. 25.

    Sun X, Yang XQ, Balasubramanian M et al (2002) In situ investigation of phase transitions of Li1+yMn2O4 spinel during li-ion extraction and insertion. J Electrochem Soc 149(7):A842.

    Article  Google Scholar 

  26. 26.

    Qi Y, Hector LG, James C, Kim KJ (2014) Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. J Electrochem Soc 161:F3010–F3018.

    Article  Google Scholar 

  27. 27.

    Edström K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the li-ion battery. Electrochim Acta 50:397–403.

    Article  Google Scholar 

  28. 28.

    Aurbach D, Levi MD, Gamulski K et al (1999) Capacity fading of LiMn2O4 spinel electrodes studies by XRD and electroanalytical techniques. J Power Sour 81:472–479

    Article  Google Scholar 

  29. 29.

    Aurbach D, Talyosef Y, Markovsky B et al (2004) Design of electrolyte solutions for li and li-ion batteries: a review. Electrochim Acta 50:247–254.

    Article  Google Scholar 

  30. 30.

    Aurbach D, Markovsky B, Salitra G et al (2007) Review on electrode–electrolyte solution interactions, related to cathode materials for li-ion batteries. J Power Sour 165:491–499.

    Article  Google Scholar 

  31. 31.

    Eriksson T, Andersson AM, Bishop AG et al (2002) Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. J Electrochem Soc 149:A69–A78.

    Article  Google Scholar 

  32. 32.

    Eriksson T, Gustafsson T, Thomas JO (2002) Surface structure of LiMn2O4 electrodes. Electrochem Solid-State Lett 5:A35–A34.

    Article  Google Scholar 

  33. 33.

    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418.

    Article  Google Scholar 

  34. 34.

    Chung KY, Yoon W-S, Kim K-B et al (2011) Formation of an SEI on a LiMn2O4 cathode during room temperature charge–discharge cycling studied by soft X-ray absorption spectroscopy at the fluorine K-edge. J Appl Electrochem 41:1295–1299.

    Article  Google Scholar 

  35. 35.

    Aurbach D, Gamolsky K, Markovsky B et al (2000) The study of surface phenomena related to electrochemical lithium intercalation into lix MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331.

    Article  Google Scholar 

  36. 36.

    Tavassol H, Chan MKY, Catarello MG et al (2013) Surface coverage and SEI induced electrochemical surface stress changes during li deposition in a model system for li-ion battery anodes. J Electrochem Soc 160:A888–A896.

    Article  Google Scholar 

  37. 37.

    Wang JW, He Y, Fan F et al (2013) Two-phase electrochemical Lithiation in amorphous silicon. Nano Lett 13:709–715.

    Article  Google Scholar 

  38. 38.

    Paz-Garcia JM, Taiwo OO, Tudisco E et al (2016) 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: time-lapse X-ray imaging and digital volume correlation. J Power Sour 320:196–203.

    Article  Google Scholar 

  39. 39.

    Nation L, Li J, James C et al (2017) In situ stress measurements during electrochemical cycling of lithium-rich cathodes. J Power Sour 364:383–391.

    Article  Google Scholar 

  40. 40.

    Sheth J, Karan NK, Abraham DP et al (2016) In situ stress evolution in li 1+xMn 2O 4Thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163:A2524–A2530.

    Article  Google Scholar 

  41. 41.

    Cho H-M, Chen MV, MacRae AC, Meng YS (2015) Effect of surface modification on Nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl Mater Interfaces 7:16231–16239.

    Article  Google Scholar 

  42. 42.

    Ho C (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350.

    Article  Google Scholar 

  43. 43.

    Xie J, Kohno K, Matsumura T et al (2008) Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition. Electrochim Acta 54:376–381.

    Article  Google Scholar 

  44. 44.

    Goonetilleke PC, Zheng JP, Roy D (2009) Effects of surface-film formation on the electrochemical characteristics of LiMn2O4 cathodes of lithium ion batteries. J Electrochem Soc 156:A709–A719.

    Article  Google Scholar 

  45. 45.

    Zheng J, Sulyma C, Goia C et al (2012) Electrochemical features of ball-milled lithium manganate spinel for rapid-charge cathodes of lithium ion batteries. J Solid State Electrochem 16:2605–2615.

    Article  Google Scholar 

  46. 46.

    Ploehn HJ, Ramadass P, White RE (2004) Solvent diffusion model for aging of lithium-ion battery cells. J Electrochem Soc 151:A456–A462.

    Article  Google Scholar 

  47. 47.

    Smith AJ, Burns JC, Zhao X et al (2011) A high precision Coulometry study of the SEI growth in li/graphite cells. J Electrochem Soc 158:A447–A452.

    Article  Google Scholar 

  48. 48.

    Lu CH, Lin SW (2002) Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries. J Mater Res.

  49. 49.

    Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V li / li x Mn2 O 4 cells. J Electrochem Soc 143:2204–2211.

    Article  Google Scholar 

  50. 50.

    Miller DJ, Proff C, Wen JG et al (2013) Observation of microstructural evolution in li battery cathode oxide particles by in situ electron microscopy. Adv Energy Mater 3:1098–1103.

    Article  Google Scholar 

  51. 51.

    Cheng Y-T, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys.

  52. 52.

    Zhao K, Pharr M, Vlassak JJ, Suo Z (2010) Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys 108(7):073517.

    Article  Google Scholar 

Download references


This work was supported as part of the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Basic Energy Sciences. The authors would like to acknowledge the Beckman Institute for Advanced Science and Technology for use of microscopy equipment and Dr. Joseph Lyding for use of spot welding equipment.

Author information



Corresponding author

Correspondence to N. R. Sottos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çapraz, Ö.Ö., Rajput, S., White, S. et al. Strain Evolution in Lithium Manganese Oxide Electrodes. Exp Mech 58, 561–571 (2018).

Download citation


  • Cathode-electrolyte Interface
  • Strain measurement
  • Lithium manganese oxide
  • Deformation
  • Surface reactions