Skip to main content
Log in

A Robust in situ TEM Experiment for Characterizing the Fracture Toughness of the Interface in Nanoscale Multilayers

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A novel in situ transmission electron microscopy (TEM) bending method using a nano-cantilever specimen that includes a naturally sharp pre-crack at the interface between a 500 nm-thick SiN layer and a 200 nm-thick Cu layer on a Si substrate is developed in order to precisely characterize the fracture toughness of the interface in nanoscale multilayers. By fabricating a perpendicular nanoscale notch in the SiN layer close to the horizontal Cu/SiN interface, a sharp pre-crack is successfully introduced at the Cu/SiN interface. In addition, by changing the relative position of the notch with respect to the fixed end of the specimen, both the instant and continuous interface crack propagation behaviors could be in situ observed using TEM. Finite element analysis shows that the crack propagation from the sharp pre-crack is dominated by a singular stress field within a region 100 nm from the crack tip under a mixed-mode state in all specimens. On the other hand, the fracture toughness represented by the critical energy release rate for the start of crack propagation along the Cu/SiN interface in all specimens is determined through a compliance method and shows good agreement with an average value of 7.1 J/m2. This indicates the robust reliability and high precision for characterizing the fracture toughness of the interface in nanoscale multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bogy DB (1971) Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J Appl Mech 38:377–386

    Article  Google Scholar 

  2. Reedy ED Jr, Guess TR (1993) Comparison of butt tensile strength data with interface corner stress intensity factor prediction. Int J Solids Struct 30:2929–2936

    Article  Google Scholar 

  3. Reedy ED Jr, Guess TR (1997) Interface corner failure analysis of joint strength: effect of adherend stiffness. Int J Fract 88:305–314

    Article  Google Scholar 

  4. Haque MA, Saif MTA (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43:248–255

    Article  Google Scholar 

  5. Haque MA, Saif MTA (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42:123–128

    Article  Google Scholar 

  6. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci U S A 102:14503–14508

    Article  Google Scholar 

  7. Espinosa HD, Bernal RA, Minary Jolandan M (2012) A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv Mater 24:4656–4675

    Article  Google Scholar 

  8. Espinosa HD, Bernal RA, Filleter T (2012) In situ TEM electromechanical testing of nanowires and nanotubes. Small 8:3233–3252

    Article  Google Scholar 

  9. Kushima A, Huang JY, Li J (2012) Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiment. ACS Nano 6:9425–9432

    Article  Google Scholar 

  10. Wang MS, Kaplan-Ashiri I, Wei XL, Rosentsveig R, Wagner HD, Tenne R, Peng LM (2008) In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res 1:22–31

    Article  Google Scholar 

  11. Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Tensile ductility and necking of metallic glass. Nature Mater 6:735–739

    Article  Google Scholar 

  12. Guo LC, Kitamura T, Yan Y, Sumigawa T, Huang K (2015) Fracture mechanics investigation on crack propagation in the nano-multilayered materials. Int J Solids Struct 64–65:208–220

    Article  Google Scholar 

  13. Huang K, Guo LC, Yan Y, Kitamura T (2016) Investigation on the competitive fracture behavior in nano-multilayered structures. Int J Solids Struct 92–93:45–53

    Article  Google Scholar 

  14. Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20:1769–1777

    Article  Google Scholar 

  15. Hintsala E, Kiener D, Jackson J, Gerberich WW (2015) In-situ measurement of free-standing, ultra-thin film cracking in bending. Exp Mech 55:1681–1690

    Article  Google Scholar 

  16. Reichardt A, Ionescu M, Davis J, Edwards L, Harrison RP, Hosemann P, Bhattacharyy D (2015) In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater 100:147–154

    Article  Google Scholar 

  17. Liebig JP, Goken M, Richter G, Mackovic M, Przybilla T, Spiecker E, Pierron ON, Merle B (2016) A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching. Ultramicroscopy 171:82–88

    Article  Google Scholar 

  18. Li J, Malis T, Dionne S (2006) Recent advances in FIB-TEM specimen preparation techniques. Mater Charact 57:64–70

    Article  Google Scholar 

  19. Mohammad YA, Wayne H, Fu Y (2010) A review of focused ion beam sputtering. Int J Precis Eng Man 11:157–170

    Article  Google Scholar 

  20. Schaufler J, Schmid C, Durst K, Goken M (2012) Determination of the interfacial strength and fracture toughness of a-C:H coatings by in-situ microcantilever bending. Thin Solid Films 522:480–484

    Article  Google Scholar 

  21. Takahashi Y, Arai S, Yamamoto Y, Higuchi K, Kondo H, Kitagawa Y, Muto S, Tanaka N (2015) Evaluation of interfacial fracture strength in micro-scale components combined with high-voltage environmental electron microscopy. Exp Mech 55:1047–1056

    Article  Google Scholar 

  22. Sumigawa T, Shishido T, Murakami T, Kitamura T (2010) Interface crack initiation due to nano-scale stress concentration. Mater Sci Eng A 527:4796–4803

    Article  Google Scholar 

  23. Kishimoto K, Yan Y, Sumigawa T, Kitamura T (2012) Mixed-mode crack initiation at the edge of Cu/Si interface due to nanoscale stress concentration. Eng Fract Mech 96:72–81

    Article  Google Scholar 

  24. Yan Y, Sumigawa T, Guo L, Kitamura T (2014) Strength evaluation of a selected interface in multi-layered nano-material. Eng Fract Mech 116:204–212

    Article  Google Scholar 

  25. Suresh S, Ritchie RO (1984) Propagation of short fatigue cracks. Int Mater Rev 29:445–475

    Article  Google Scholar 

  26. Suresh S, Tschegg EK (1987) Combined mode I-mode III fracture of fatigue-precracked alumina. J Am Ceram Soc 70:726–733

    Article  Google Scholar 

  27. Konetschnik R, Daniel R, Brunner R, Kiener D (2017) Selective interface toughness measurements of layered thin films. AIP Adv 7:035307

    Article  Google Scholar 

  28. Rubanov S, Munroe PR (2004) FIB-induced damage in silicon. J Microsc 214:213–223

    Article  MathSciNet  Google Scholar 

  29. Giannuzzi LA, Stevie FA (2005) Introduction to focused ion beams: Instrumentation, theory, techniques, and practice. Springer, New York

    Book  Google Scholar 

  30. Matoy K, Detzel T, Muller M, Motz C, Dehm G (2009) Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf Coat Tech 204:213–223

    Article  Google Scholar 

  31. Yan Y, Sumigawa T, Shang F, Kitamura T (2011) Cohesive zone criterion for cracking along the Cu/Si interface in nanoscale components. Eng Fract Mechs 78:2935–2946

    Article  Google Scholar 

  32. Nix WD (1989) Mechanical properties of thin film. Metall Mater Trans 20:2217–2245

    Article  Google Scholar 

  33. Lee KS, Wuttiphan S, Hu XZ, Lee SK, Lawn BR (1998) Contact-induced transverse fractures in brittle layers on soft substrates: a study on silicon nitride bilayers. J Am Ceram Soc 81:571–580

    Article  Google Scholar 

  34. Takahashi Y, Hirakata H, Kitamura T (2008) Quantitative evaluation of plasticity of a ductile nano-component. Thin Solid Films 516:1925–1930

    Article  Google Scholar 

  35. Kitamura T, Hirakata H, Itsuji T (2003) Effect of residual stress on delamination from interface edge between nano-films. Eng Fract Mech 70:2089–2101

    Article  Google Scholar 

  36. Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, London

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Specially Promoted Research [grant numbers 25000012, 26289006, 15 K13831 and 15H02210] from the Japan Society of Promotion of Science (JSPS); and the Foundation of the President of China Academy of Engineering Physics [grant number 2014-1-097].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Yan or T. Sumigawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Sumigawa, T. & Kitamura, T. A Robust in situ TEM Experiment for Characterizing the Fracture Toughness of the Interface in Nanoscale Multilayers. Exp Mech 58, 721–731 (2018). https://doi.org/10.1007/s11340-018-0375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-0375-6

Keywords

Navigation