Skip to main content
Log in

Modulus of Fibrous Collagen at the Length Scale of a Cell

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The extracellular matrix provides macroscale structural support to tissues as well as microscale mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression, proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the cell. To address this challenge, we designed an experimental method to measure the modulus of a network of collagen fibers at this scale. We used spherical particles of an active hydrogel (poly N-isopropylacrylamide) that contract when heated, thereby applying local forces to the collagen matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials to compute the modulus of the local region surrounding each particle. We found the modulus at this length scale to be highly heterogeneous, with modulus varying by a factor of 3. In addition, at different values of applied strain, we observed both strain stiffening and strain softening, indicating nonlinearity of the collagen network. Thus, this experimental method quantifies local mechanical properties in a fibrous network at the scale of a cell, while also accounting for inherent nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Discher D, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Google Scholar 

  2. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  3. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Google Scholar 

  4. Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by rho/rock-dependent matrix reorganization. Biophys J 95 (11):5374–5384

    Google Scholar 

  5. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174

    Google Scholar 

  6. Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, Bass BR, Crone WC, Jiang Y, Weaver AM, Eliceiri KW, Keely PJ (2014) 3D Collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J 107(11):2546–2558

    Google Scholar 

  7. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Google Scholar 

  8. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):1

    Google Scholar 

  9. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a fak–erk linkage. Oncogene 28(49):4326–4343

    Google Scholar 

  10. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194

    Google Scholar 

  11. Stein AM, Vader DA, Weitz DA, Sander LM (2011) The micromechanics of three-dimensional collagen-I gels. Complexity 16(4):22–28

    Google Scholar 

  12. Motte S, Kaufman LJ (2013) Strain stiffening in collagen I networks. Biopolymers 99(1):35–46

    Google Scholar 

  13. Notbohm J, Lesman A, Rosakis P, Tirrell DA, Ravichandran G (2015) Microbuckling of fibrin provides a mechanism for cell mechanosensing. J R Soc Interface 12(108):20150320

    Google Scholar 

  14. Vahabi M, Sharma A, Licup AJ, van Oosten AS, Galie PA, Janmey PA, MacKintosh FC (2016) Elasticity of fibrous networks under uniaxial prestress. Soft Matter 12(22):5050–5060

    Google Scholar 

  15. van Oosten AS, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270

    Google Scholar 

  16. Burkel B, Notbohm J (2017) Mechanical response of collagen networks to nonuniform microscale loads. Soft Matter 13(34):5749–5758

    Google Scholar 

  17. Shokef Y, Safran SA (2012) Scaling laws for the response of nonlinear elastic media with implications for cell mechanics. Phys Rev Lett 108(17):178103

    Google Scholar 

  18. Wang H, Abhilash A, Chen CS, Wells RG, Shenoy VB (2014) Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys J 107(11):2592–2603

    Google Scholar 

  19. Rosakis P, Notbohm J, Ravichandran G (2015) A model for compression-weakening materials and the elastic fields due to contractile cells. J Mech Phys Solids 85:18–32

    MathSciNet  Google Scholar 

  20. Xu X, Safran SA (2015) Nonlinearities of biopolymer gels increase the range of force transmission. Phys Rev E 92(3):032728

    Google Scholar 

  21. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type i collagen extracellular matrices with varied microstructure. J Biomech Eng–T ASME 124(2):214–222

    Google Scholar 

  22. Janmey PA, McCormick ME, Rammensee S, Leight JL, Georges PC, MacKintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6(1):48–51

    Google Scholar 

  23. Brown AE, Litvinov RI, Discher DE, Purohit PK, Weisel JW (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941):741–474

    Google Scholar 

  24. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. Plos One 4(6):e5902

    Google Scholar 

  25. Münster S., Jawerth LM, Leslie BA, Weitz JI, Fabry B, Weitz DA (2013) Strain history dependence of the nonlinear stress response of fibrin and collagen networks. P Natl Acad Sci USA 110(30):12197–12202

    Google Scholar 

  26. Kim OV, Litvinov RI, Weisel JW, Alber MS (2014) Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 35(25):6739–6749

    Google Scholar 

  27. Kurniawan NA, Wong LH, Rajagopalan R (2012) Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. Biomacromolecules 13(3):691–698

    Google Scholar 

  28. Lin DC, Shreiber DI, Dimitriadis EK, Horkay F (2009) Spherical indentation of soft matter beyond the hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechan 8(5):345–358

    Google Scholar 

  29. Velegol D, Lanni F (2001) Cell traction forces on soft biomaterials. I. microrheology of type I collagen gels. Biophys J 81(3):1786–1792

    Google Scholar 

  30. Kotlarchyk MA, Shreim SG, Alvarez-Elizondo MB, Estrada LC, Singh R, Valdevit L, Kniazeva E, Gratton E, Putnam AJ, Botvinick EL (2011) Concentration independent modulation of local micromechanics in a fibrin gel. Plos One 6(5):e20201

    Google Scholar 

  31. Shayegan M, Forde NR (2013) Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels. Plos One 8(8):e70590

    Google Scholar 

  32. Jones CA, Cibula M, Feng J, Krnacik EA, McIntyre DH, Levine H, Sun B (2015) Micromechanics of cellularized biopolymer networks. P Natl Acad Sci USA 112(37):E5117–E5122

    Google Scholar 

  33. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B (2012) 3D traction forces in cancer cell invasion. Plos One 7(3):e33476

    Google Scholar 

  34. Lesman A, Notbohm J, Tirrell D, Ravichandran G (2014) Contractile forces regulate cell division in three-dimensional environments. J Cell Biol 205(2):155–162

    Google Scholar 

  35. Notbohm J, Lesman A, Tirrell DA, Ravichandran G (2015) Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integr Biol 7(10):1186–1195

    Google Scholar 

  36. Owen LM, Adhikari AS, Patel M, Grimmer P, Leijnse N, Kim MC, Notbohm J, Franck C, Dunn AR (2017) A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol Biol Cell 28(14):1959–1974

    Google Scholar 

  37. Grimmer P, Notbohm J (2018) Displacement propagation in fibrous networks due to local contraction. J Biomech Eng 140(4): 041011

    Google Scholar 

  38. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. P Roy Soc Lond A Mat 252(1271):561–569

    MathSciNet  MATH  Google Scholar 

  39. Burkel B, Proestaki M, Tyznik S, Notbohm J (2018) Heterogeneity and nonaffinity of cell-induced matrix displacements. Phys Rev E 98(5):052410

    Google Scholar 

  40. Raub C, Putnam A, Tromberg B, George S (2010) Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater 6(12):4657–4665

    Google Scholar 

  41. Lopez-Garcia MdC, Beebe D, Crone W (2010) Mechanical interactions of mouse mammary gland cells with collagen in a three-dimensional construct. Ann Biomed Eng 38(8):2485–2498

    Google Scholar 

  42. Burkel B, Morris BA, Ponik SM, Riching KM, Eliceiri KW, Keely PJ (2016) Preparation of 3D collagen gels and microchannels for the study of 3D interactions in vivo. J Vis Exp (111), e53989

  43. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60(1):24–34

    Google Scholar 

  44. Sierra-Martin B, Laporte Y, South AB, Lyon LA, Fernandez-Nieves A (2011) Bulk modulus of poly (N-isopropylacrylamide) microgels through the swelling transition. Phys Rev E 84(1): 011406

    Google Scholar 

  45. Voudouris P, Florea D, van der Schoot P, Wyss HM (2013) Micromechanics of temperature sensitive microgels: dip in the poisson ratio near the lcst. Soft Matter 9(29):7158–7166

    Google Scholar 

  46. Licup AJ, Münster S, Sharma A, Sheinman M, Jawerth LM, Fabry B, Weitz DA, MacKintosh FC (2015) Stress controls the mechanics of collagen networks. P Natl Acad Sci USA 112(31):9573–9578

    Google Scholar 

  47. Yang Y-l, Leone LM, Kaufman LJ (2009) Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys J 97(7):2051–2060

    Google Scholar 

  48. Feng J, Levine H, Mao X, Sander LM (2015) Alignment and nonlinear elasticity in biopolymer gels. Phys Rev E 91(4):042710

    Google Scholar 

  49. Stout DA, Bar-Kochba E, Estrada JB, Toyjanova J, Kesari H, Reichner JS, Franck C (2016) Mean deformation metrics for quantifying 3d cell–matrix interactions without requiring information about matrix material properties. P Natl Acad Sci USA 113(11):2898–2903

    MathSciNet  MATH  Google Scholar 

  50. Nam S, Lee J, Brownfield DG, Chaudhuri O (2016) Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys J 111(10):2296–2308

    Google Scholar 

  51. Nam S, Hu K, Butte M, Chaudhuri O (2016) Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. P Natl Acad Sci USA 113(20):5492–5497

    Google Scholar 

  52. Velegol D, Lanni F (2001) Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys J 81(3):1786–1792

    Google Scholar 

  53. Kotlarchyk MA, Shreim SG, Alvarez-Elizondo MB, Estrada LC, Singh R, Valdevit L, Kniazeva E, Gratton E, Putnam AJ, Botvinick EL (2011) Concentration independent modulation of local micromechanics in a fibrin gel. Plos One 6(5):1–12

    Google Scholar 

  54. Hu X, Margadant FM, Yao M, Sheetz MP (2017) Molecular stretching modulates mechanosensing pathways. Protein Sci 26(7):1337–1351

    Google Scholar 

  55. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. P Natl Acad Sci USA 94(3):849–854

    Google Scholar 

  56. Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: from pathways to scaling relationships. J Cell Biol 216(2):305–315

    Google Scholar 

  57. Kirby TJ, Lammerding J (2018) Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 20:373–381

    Google Scholar 

Download references

Acknowledgments

We thank the Materials Science Center at the University of Wisconsin–Madison, which provided access to the spinning disk confocal microscope. This work was supported in part by NIH NCI P30CA014520–UW Comprehensive Cancer Center Support Grant and National Science Foundation grant number CMMI-1749400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Notbohm.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proestaki, M., Ogren, A., Burkel, B. et al. Modulus of Fibrous Collagen at the Length Scale of a Cell. Exp Mech 59, 1323–1334 (2019). https://doi.org/10.1007/s11340-018-00453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-018-00453-4

Keywords

Navigation