Skip to main content
Log in

Micrographic Digital Image Correlation Coupled with Microlithography: Case Study of Strain Localization and Subsequent Cracking at an FIB Notch Tip in a Laminated Ti-6Al-4V Alloy

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This study presents a microlithography-based approach to increase the spatial resolution of strain mapping by micrographic digital image correlation. A micro-mesh with a lattice size of 500 nm was added on the surface of a Ti-6Al-4V alloy specimen with a coarse lath size of 1.1 μm. Although the micro-mesh pattern was not random, a combination of the laminated microstructure and the micro-mesh enabled sub-micrometer strain mapping through digital image correlation even for coarse lath larger than 1 μm. Specifically, the strain mapping technique used in this study was applied to characterize the strain component and distribution near an artificial sharp micro-stress concentration site introduced by a focused ion beam. The strain characterization under tensile deformation clarified that cracking occurred via shear strain localization at the micro-stress concentration site, indicating that accumulation of damage (such as vacancy or dislocation) plays an important role in the cracking mechanism of the Ti-6Al-4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Yan D, Tasan CC, Raabe D (2015) High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater 96:399–409. https://doi.org/10.1016/j.actamat.2015.05.038

    Article  Google Scholar 

  2. Kaneko T, Koyama M, Fujisawa T, Tsuzaki K (2016) Combined Multi-scale Analyses on Strain/Damage/Microstructure in Steel: Example of Damage Evolution Associated with ε-martensitic Transformation. ISIJ Int 56(11):2037–2046. https://doi.org/10.2355/isijinternational.ISIJINT-2016-272

    Article  Google Scholar 

  3. Lu Y-W, Lupton C, Zhu M-L, Tong J (2015) In Situ Experimental Study of Near-Tip Strain Evolution of Fatigue Cracks. Exp Mech 55(6):1175–1185. https://doi.org/10.1007/s11340-015-0014-4

    Article  Google Scholar 

  4. Sutton MA, Matta F, Rizos D, Ghorbani R, Rajan S, Mollenhauer DH, Schreier HW, Lasprilla AO (2017) Recent Progress in Digital Image Correlation: Background and Developments since the 2013 W M Murray Lecture. Exp Mech 57(1):1–30. https://doi.org/10.1007/s11340-016-0233-3

    Article  Google Scholar 

  5. Stinville JC, Echlin MP, Texier D, Bridier F, Bocher P, Pollock TM (2016) Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation. Exp Mech 56(2):197–216. https://doi.org/10.1007/s11340-015-0083-4

    Article  Google Scholar 

  6. Jin H, Lu WY, Korellis J (2008) Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J Strain Anal Eng Des 43(8):719–728. https://doi.org/10.1243/03093247JSA412

    Article  Google Scholar 

  7. Tasan CC, Hoefnagels JPM, Geers MGD (2010) Microstructural banding effects clarified through micrographic digital image correlation. Scr Mater 62(11):835–838. https://doi.org/10.1016/j.scriptamat.2010.02.014

    Article  Google Scholar 

  8. Hamada S, Fujisawa T, Koyama M, Koga N, Nakada N, Tsuchiyama T, Ueda M, Noguchi H (2014) Strain mapping with high spatial resolution across a wide observation range by digital image correlation on plastic replicas. Mater Charact 98:140–146

    Article  Google Scholar 

  9. Scrivens WA, Luo Y, Sutton MA, Collette SA, Myrick ML, Miney P, Colavita PE, Reynolds AP, Li X (2007) Development of Patterns for Digital Image Correlation Measurements at Reduced Length Scales. Exp Mech 47(1):63–77. https://doi.org/10.1007/s11340-006-5869-y

    Article  Google Scholar 

  10. Kammers AD, Daly S (2013) Self-Assembled Nanoparticle Surface Patterning for Improved Digital Image Correlation in a Scanning Electron Microscope. Exp Mech 53(8):1333–1341. https://doi.org/10.1007/s11340-013-9734-5

    Article  Google Scholar 

  11. Koyama M, Yamanouchi K, Wang Q, Ri S, Tanaka Y, Hamano Y, Yamasaki S, Mitsuhara M, Ohkubo M, Noguchi H, Tsuzaki K (2017) Multiscale in situ deformation experiments: A sequential process from strain localization to failure in a laminated Ti-6Al-4V alloy. Mater Charact 128:217–225. https://doi.org/10.1016/j.matchar.2017.04.010

    Article  Google Scholar 

  12. Hamano Y, Koyama M, Hamada S, Noguchi H (2016) Notch Sensitivity of the Fatigue Limit in High-Strength Steel. ISIJ Int 56(8):1480–1486. https://doi.org/10.2355/isijinternational.ISIJINT-2015-744

    Article  Google Scholar 

  13. Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: SEM Imaging at Magnifications from 200 to 10,000. Exp Mech 47(6):775–787. https://doi.org/10.1007/s11340-007-9042-z

    Article  Google Scholar 

  14. Sun Z, Lyons JS, McNeill SR (1997) Measuring Microscopic Deformations with Digital Image Correlation. Opt Lasers Eng 27(4):409–428. https://doi.org/10.1016/S0143-8166(96)00041-3

    Article  Google Scholar 

  15. Choi S, Shah SP (1997) Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 37(3):307–313. https://doi.org/10.1007/bf02317423

    Article  Google Scholar 

  16. Larsson L, Sjödahl M, Thuvander F (2004) Microscopic 3-D displacement field measurements using digital speckle photography. Opt Lasers Eng 41(5):767–777. https://doi.org/10.1016/S0143-8166(03)00028-9

    Article  Google Scholar 

  17. Kang J, Jain M, Wilkinson DS, Embury JD (2005) Microscopic Strain Mapping Using Scanning Electron Microscopy Topography Image Correlation at Large Strain. J Strain Anal Eng Des 40(6):559–570. https://doi.org/10.1243/030932405X16151

    Article  Google Scholar 

  18. Zhang G, Liang D, Zhang J-M (2006) Image analysis measurement of soil particle movement during a soil–structure interface test. Comput Geotech 33(4):248–259. https://doi.org/10.1016/j.compgeo.2006.05.003

    Article  Google Scholar 

  19. Lagattu F, Bridier F, Villechaise P, Brillaud J (2006) In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique. Mater Charact 56(1):10–18. https://doi.org/10.1016/j.matchar.2005.08.004

    Article  Google Scholar 

  20. Kang J, Ososkov Y, Embury JD, Wilkinson DS (2007) Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56(11):999–1002. https://doi.org/10.1016/j.scriptamat.2007.01.031

    Article  Google Scholar 

  21. Ghadbeigi H, Pinna C, Celotto S, Yates JR (2010) Local plastic strain evolution in a high strength dual-phase steel. Mater Sci Eng A 527(18–19):5026–5032. https://doi.org/10.1016/j.msea.2010.04.052

    Article  Google Scholar 

  22. Rehrl C, Kleber S, Antretter T, Pippan R (2011) A methodology to study crystal plasticity inside a compression test sample based on image correlation and EBSD. Mater Charact 62(8):793–800. https://doi.org/10.1016/j.matchar.2011.05.009

    Article  Google Scholar 

  23. Lei D, Hou F, Gong X (2012) Investigation of Deformation at the Grain Scale in Polycrystalline Materials by Coupling Digital Image Correlation and Digital Microscopy. Exp Tech 36(2):24–31. https://doi.org/10.1111/j.1747-1567.2010.00670.x

    Article  Google Scholar 

  24. Di Gioacchino F, Quinta da Fonseca J (2013) Plastic Strain Mapping with Sub-micron Resolution Using Digital Image Correlation. Exp Mech 53(5):743–754. https://doi.org/10.1007/s11340-012-9685-2

    Article  Google Scholar 

  25. Joo S-H, Lee JK, Koo J-M, Lee S, Suh D-W, Kim HS (2013) Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scr Mater 68(5):245–248. https://doi.org/10.1016/j.scriptamat.2012.10.025

    Article  Google Scholar 

  26. Di Gioacchino F, Clegg WJ (2014) Mapping deformation in small-scale testing. Acta Mater 78:103–113. https://doi.org/10.1016/j.actamat.2014.06.033

    Article  Google Scholar 

  27. Wang Q, Ri S, Tsuda H, Koyama M, Tsuzaki K (2017) Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction. Opt Express 25(12):13465–13480. https://doi.org/10.1364/OE.25.013465

    Article  Google Scholar 

  28. Jones IP, Hutchinson WB (1981) Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals. Acta Metall 29(6):951–968. https://doi.org/10.1016/0001-6160(81)90049-3

    Article  Google Scholar 

  29. Welsch G, Bunk W (1982) Deformation modes of the α-phase of ti-6al-4v as a function of oxygen concentration and aging temperature. Metall Trans A 13(5):889–899. https://doi.org/10.1007/bf02642403

    Article  Google Scholar 

  30. Tanaka K, Mura T (1982) A theory of fatigue crack initiation at inclusions. Metall Trans A 13(1):117–123. https://doi.org/10.1007/bf02642422

    Article  Google Scholar 

  31. Hori F, Oshima R (2002) Positron Annihilation Study in the Early Stage of Fatigue in Type 304 Stainless Steel. Phys Status Solidi A 191(2):409–417. https://doi.org/10.1002/1521-396X(200206)191:2<409::AID-PSSA409>3.0.CO;2-H

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cross-ministerial Strategic Innovation Promotion Program (Structural Materials for Innovation) and JSPS KAKENHI (JP16H06365 and JP17H04956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, M., Tanaka, Y. & Tsuzaki, K. Micrographic Digital Image Correlation Coupled with Microlithography: Case Study of Strain Localization and Subsequent Cracking at an FIB Notch Tip in a Laminated Ti-6Al-4V Alloy. Exp Mech 58, 381–386 (2018). https://doi.org/10.1007/s11340-017-0336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0336-5

Keywords

Navigation