Skip to main content

Advertisement

Log in

Experimental investigation of the coupled magneto-mechanical response in magnetorheological elastomers

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Magnetorheological elastomers (MREs) are materials made of a soft elastomer matrix filled with magnetizable particles. These flexible composites that deform in response to an externally applied magnetic field are of special interest in advanced engineering applications such as actuators, artificial muscles or shape control. However, no systematic characterization of their coupled response has been undertaken so far, thus limiting the efficient design of MRE-based devices. In this study, we propose a framework—relying on both specially designed samples and a dedicated experimental setup—to characterize experimentally the coupled magneto-mechanical response of MREs since magnetization within the sample is nearly uniform and structural-dependent effects are minimized. The influence of particle content and arrangement within the composite are particularly studied and the corresponding experimental results give some insight into the underlying microstructural mechanisms that are responsible for the macroscopic deformation of MREs under combined magnetic and mechanical loading conditions. Such data is crucial for the design of new MRE composite materials in which the microstructure is optimized (to have the largest coupling effect with minimal energy input).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hamrock B (2006) Mechanical Engineers' Handbook: Materials and Mechanical Design. Wiley, Columbus

    Google Scholar 

  2. Rigbi Z, Jilken L (1983) The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. J Magn Magn Mater 37:267–276. https://doi.org/10.1016/0304-8853(83)90055-0

    Article  Google Scholar 

  3. Bustamante R (2007) Mathematical modelling of non-linear magneto-and electro-active rubber-like materials. Dissertation, University of Glasgow

  4. Farshad M, Benine A (2004) Magnetoactive elastomer composites. Polym Test 23:347–353. https://doi.org/10.1016/S0142-9418(03)00103-X

    Article  Google Scholar 

  5. Gong X, Zhang X, Zhang P (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24:669–676. https://doi.org/10.1016/j.polymertesting.2005.03.015

    Article  Google Scholar 

  6. Chen L, Gong X, Jiang W, Yao J, Deng H, Li W (2007) Investigation on magnetorheological elastomers based on natural rubber. J Mater Sci 42:5483–5489. https://doi.org/10.1007/s10853-006-0975-x

    Article  Google Scholar 

  7. Kallio M (2005) The elastic and damping properties of magnetorheological elastomers. Dissertation, VTT Technical Research Centre of Finland

  8. Gong X, Chen L, Li J (2007) Study of utilizable magnetorheological elastomers. Int J M P B 21:4875–4882. https://doi.org/10.1142/S0217979207045785

    Article  Google Scholar 

  9. Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569. https://doi.org/10.1016/S0957-4158(99)00064-1

    Article  Google Scholar 

  10. Jolly MR, Carlson JD, Muñoz BC, Bullions TA (1996) The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intell Mater Syst Struct 7:613–622. https://doi.org/10.1177/1045389X9600700601

    Article  Google Scholar 

  11. Ginder JM, Nichols ME, Elie LD, Clark SM (2000) Controllable-stiffness components based on magnetorheological elastomers. SPIE's 7th Annual International Symposium on Smart Structures and Materials. https://doi.org/10.1117/12.388844

  12. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22:245–251. https://doi.org/10.1016/S0142-9418(02)00043-0

    Article  Google Scholar 

  13. Elie L, Ginder J, Nichols M, Stewart W (2002) Variable stiffness bushing using magnetorheological elastomers. European Patent

  14. Farshad M, Le Roux M (2004) A new active noise abatement barrier system. Polym Test 23:855–860. https://doi.org/10.1016/j.polymertesting.2004.02.003

    Article  Google Scholar 

  15. Crist RJ (2009) Active vibrational damper. United States Patent

  16. Marur PR (2013) Magneto-rheological elastomer-based vehicle suspension. United States Patent Application Publication

  17. Kim MS, Yang KM, Lee SH, Yoon JH, Jeong UC, Yang IH, Oh JE (2014) Variable differential mount apparatus using magnetorheological elastomer. United States Patent

  18. Thorsteinsson F, Gudmundsson I, Lecomte C (2015) Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness. United States Patent Application Publication

  19. Diguet G, Beaugnon E, Cavaillé J (2009) From dipolar interactions of a random distribution of ferromagnetic particles to magnetostriction. J Magn Magn Mater 321:396–401. https://doi.org/10.1016/j.jmmm.2008.08.112

    Article  Google Scholar 

  20. Diguet G, Beaugnon E, Cavaillé J (2010) Shape effect in the magnetostriction of ferromagnetic composite. J Magn Magn Mater 322:3337–3341. https://doi.org/10.1016/j.jmmm.2010.06.020

    Article  Google Scholar 

  21. Shen Y, Golnaraghi MF, Heppler G (2004) Experimental research and modeling of magnetorheological elastomers. J Intell Mater Syst Struct 15:27–35. https://doi.org/10.1177/1045389X04039264

    Article  Google Scholar 

  22. Martin JE, Anderson RA, Read D, Gulley G (2006) Magnetostriction of field-structured magnetoelastomers. Phys Rev E 74:051507. https://doi.org/10.1103/PhysRevE.74.051507

    Article  Google Scholar 

  23. Schubert G, Harrison P (2015) Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym Test 42:122–134. https://doi.org/10.1016/j.polymertesting.2015.01.008

    Article  Google Scholar 

  24. Schubert G, Harrison P (2016) Equi-biaxial tension tests on magneto-rheological elastomers. Smart Mater Struct 25:015015. https://doi.org/10.1088/0964-1726/25/1/015015

    Article  Google Scholar 

  25. Bossis G, Abbo C, Cutillas S, Lacis S, Métayer C (2001) Electroactive and electrostructured elastomers. Int J M P B 15:564–573. https://doi.org/10.1142/S0217979201005027

    Article  Google Scholar 

  26. Bellan C, Bossis G (2002) Field dependence of viscoelastic properties of MR elastomers. Int J M P B 16:2447–2453. https://doi.org/10.1142/S0217979202012499

    Article  Google Scholar 

  27. Coquelle E, Bossis G (2005) Magnetostriction and piezoresistivity in elastomers filled with magnetic particles. J Adv Sci 17:132–138. https://doi.org/10.2978/jsas.17.132

    Article  Google Scholar 

  28. Kankanala SV (2007) On finitely strained magnetoelastic solids. Dissertation, University of Michigan

  29. Danas K, Kankanala S, Triantafyllidis N (2012) Experiments and modeling of iron-particle-filled magnetorheological elastomers. J Mech Phys Solids 60:120–138. https://doi.org/10.1016/j.jmps.2011.09.006

    Article  Google Scholar 

  30. Mullins L (1948) Effect of stretching on the properties of rubber. Rubber Chem Technol 21:281–300. https://doi.org/10.5254/1.3546914

    Article  Google Scholar 

  31. Mullins L, Tobin N (1957) Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem Technol 30:555–571. https://doi.org/10.5254/1.3542705

    Article  Google Scholar 

  32. Miehe C, Keck J (2000) Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365. https://doi.org/10.1016/S0022-5096(99)00017-4

    Article  MATH  Google Scholar 

  33. Coquelle E, Bossis G (2006) Mullins effect in elastomers filled with particles aligned by a magnetic field. Int J Solids Struct 43:7659–7672. https://doi.org/10.1016/j.ijsolstr.2006.03.020

    Article  MATH  Google Scholar 

  34. Dekkers M, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene-glass-bead composites. J Appl Polym Sci 28:3809–3815. https://doi.org/10.1002/app.1983.070281220

    Article  Google Scholar 

  35. Gent A, Park B (1984) Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci 19:1947–1956. https://doi.org/10.1007/BF00550265

    Article  Google Scholar 

  36. Fu S, Feng X, Lauke B, Mai Y (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Eng 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  37. Guan X, Dong X, Ou J (2008) Magnetostrictive effect of magnetorheological elastomer. J Magn Magn Mater 320:158–163. https://doi.org/10.1016/j.jmmm.2007.05.043

    Article  Google Scholar 

  38. Osborn J (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67:351. https://doi.org/10.1103/PhysRev.67.351

    Article  Google Scholar 

  39. ASTM Standard D412-06 (2006) Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International, West Conshohocken. https://doi.org/10.1520/D0412-06

  40. ISO 37:2011 (2011) Rubber, vulcanized or thermoplastic - Determination of tensile stress-strain properties. International Organization for Standardization, Geneva, Switzerland

  41. Galipeau E, Rudykh S, deBotton G, Ponte Castañeda P (2014) Magnetoactive elastomers with periodic and random microstructures. Int J Solids Struct 51:3012–3024. https://doi.org/10.1016/j.ijsolstr.2014.04.013

    Article  Google Scholar 

  42. Goshkoderia A, Rudykh S (2017) Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field. Compos Eng 128:19–29. https://doi.org/10.1016/j.compositesb.2017.06.014

    Article  Google Scholar 

  43. ASTM E8-01 (2001) Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken. https://doi.org/10.1520/E0008-01

  44. ISO 6892-1:2016 (2016)  Metallic materials Tensile testing Part 1: Method of test at room temperature. International Organization for Standardization, Geneva, Switzerland

  45. Brown W (1962) Magnetostatic Principles. North-Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  46. Haynes WM (2014) CRC handbook of chemistry and physics. CRC press, Boca Raton

    Google Scholar 

  47. Schubert G (2014) Manufacture, characterisation and modelling of magneto-rheological elastomers. Dissertation, University of Glasgow

  48. Gorodkin S, James R, Kordonski W (2009) Magnetic properties of carbonyl iron particles in magnetorheological fluids. J Phys Conf Ser 149. https://doi.org/10.1088/1742-6596/149/1/012051

  49. Ciesielski A (1999) An introduction to rubber technology. iSmithers Rapra Publishing, Shawbury

    Google Scholar 

  50. Pössinger T, Bolzmacher C, Bodelot L, Triantafyllidis N (2014) Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain. Microsyst Technol 20:803–814. https://doi.org/10.1007/s00542-013-2036-0

    Article  Google Scholar 

  51. Gross H, Singer W, Totzeck M (2005) Handbook of optical systems. Wiley-VCH, Berlin

    Book  Google Scholar 

  52. Lefèvre, V., Danas, K., & Lopez-Pamies, O. (2017). A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens. J Mech Phys Solids 107:343–364. https://doi.org/10.1016/j.jmps.2017.06.017

  53. Hashin Z (1983) Analysis of composite materials. J Appl Mech 50:481–505. https://doi.org/10.1115/1.3167081

    Article  MATH  Google Scholar 

  54. Moon FC, Pao YH (1968) Magnetoelastic Buckling of a Thin Plate. J Appl Mech 35:53–58. https://doi.org/10.1115/1.3601173

    Article  Google Scholar 

  55. Rudykh S, Bertoldi K (2013) Stability of anisotropic magnetorheological elastomers in finite deformations: a micromechanical approach. J Mech Phys Solids 61:949–967. https://doi.org/10.1016/j.jmps.2012.12.008

    Article  MathSciNet  Google Scholar 

  56. Ginder J, Clark S, Schlotter W, Nichols M (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J M P B 16:2412–2418. https://doi.org/10.1142/S021797920201244X

    Article  Google Scholar 

  57. Kankanala S, Triantafyllidis N (2008) Magnetoelastic buckling of a rectangular block in plane strain. J Mech Phys Solids 56:1147–1169. https://doi.org/10.1016/j.jmps.2007.10.008

    Article  MathSciNet  MATH  Google Scholar 

  58. Davis L (1999) Model of magnetorheological elastomers. J Appl Phys 85:3348–3351. https://doi.org/10.1063/1.369682

    Article  Google Scholar 

  59. Han Y, Mohla A, Huang X, Hong W, Faidley LE (2015) Magnetostriction and field stiffening of magneto-active elastomers. Int J Appl Mech 7:1550001. https://doi.org/10.1142/S1758825115400013

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge LMS engineers Vincent De Greef for tailoring the acquisition software to the magneto-mechanical experiments, Erik Guimbretière for his contribution to the setup design as well as François Lelong and Antoine Soler for machining. We also thank Kostas Danas and Nick Triantafyllidis for their help on theoretical and numerical aspects. The contribution of Lingjie Cai during his master internship is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bodelot.

Electronic supplementary material

ESM 1

(PDF 251 kb)

ESM 2

(MP4 306 kb)

ESM 3

(MP4 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodelot, L., Voropaieff, JP. & Pössinger, T. Experimental investigation of the coupled magneto-mechanical response in magnetorheological elastomers. Exp Mech 58, 207–221 (2018). https://doi.org/10.1007/s11340-017-0334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0334-7

Keywords

Navigation