Skip to main content
Log in

3D Deformation Measurement of Soft Material under Indentation Using Improved Diffraction-Assisted Image Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In inverse finite element-based analysis, complete experimental data collection is critical for multi-parameter identification and physical modeling of all kinds of materials. In this paper, diffraction-assisted image correlation (DAIC) is improved and proposed for the deformation measurement of a soft material under indentation with no blind area. A simple and convenient image-based 3D calibration method was developed, and more accurate formulations for 3D displacement measurement based on a more rigorous imaging model were derived. Using the improved DAIC, a newly developed imaging device with indenter-fixed loading and no blind area is proposed that allows 3D displacements of the whole upper surface of a soft silica gel specimen to be retrieved. The experimental results demonstrate that the proposed method is an accurate, efficient and convenient tool with a simple structure for 3D indentation deformation measurement and illustrate its capabilities to capture deformation in indentation tests with tough testing requirements, such as in situ measurement with limited access (high integration level) and dynamic testing (capturing of synchronously stereo images).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Robitaille M, Belisle N, Dang S, Faigle E, Morck C, Uth P, Wan KT (2014) An optical topographic technique to map the 3-D deformed profile of a convex lens under external loading. Exp Mech 55(3):641–646. doi:10.1007/s11340-014-9970-3

    Article  Google Scholar 

  2. Then C, Vogl TJ, Silber G (2012) Method for characterizing viscoelasticity of human gluteal tissue. J Biomech 45(7):1252–1258. doi:10.1016/j.jbiomech.2012.01.037

    Article  Google Scholar 

  3. Jordan P, Socrate S, Zickler TE, Howe RD (2009) Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. J Mech Behav Biomed Mater 2(2):192–201. doi:10.1016/j.jmbbm.2008.08.006

    Article  Google Scholar 

  4. Sasson A, Patchornik S, Eliasy R, Robinson D, Haj-Ali R (2012) Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. J Mech Behav Biomed Mater 8:143–153. doi:10.1016/j.jmbbm.2011.12.008

    Article  Google Scholar 

  5. Moerman KM, Holt CA, Evans SL, Simms CK (2009) Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. J Biomech 42(8):1150–1153

    Article  Google Scholar 

  6. Ahn B, Kim J (2010) Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations. Med Image Anal 14(2):138–148. doi:10.1016/j.media.2009.10.006

    Article  Google Scholar 

  7. Genovese K, Montes A, Martínez A, Evans SL (2015) Full-surface deformation measurement of anisotropic tissues under indentation. Med Eng Phys 37(5):484–493

    Article  Google Scholar 

  8. Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Article  Google Scholar 

  9. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42(4):233–253

    Article  Google Scholar 

  10. Dai X, Xie H, Dai X, Xie H (2015) Constitutive parameter identification of 3D printing material based on the virtual fields method. Measurement 59(59):38–43

    Article  Google Scholar 

  11. Zhou M, Xie H, Wu L (2016) Virtual fields method coupled with moiré interferometry: special considerations and application. Opt Lasers Eng 87:214–222

    Article  Google Scholar 

  12. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties–a review. Strain 42(2):69–80

    Article  Google Scholar 

  13. Gao J, Shang H (2009) Deformation-pattern-based digital image correlation method and its application to residual stress measurement. Appl Opt 48(7):1371–1381

    Article  Google Scholar 

  14. Liu Z, Gao J (2011) Deformation-pattern-based digital speckle correlation for coefficient of thermal expansion evaluation of film. Opt Express 19(18):17469–17479

    Article  Google Scholar 

  15. Dong J, Liu Z, Gao J (2016) Multi-parameter inversion and Thermo-mechanical deformation decoupling using I-DIC. Exp Mech 57(1):31–39

    Article  Google Scholar 

  16. Moerman KM, Sprengers AM, Nederveen AJ, Simms CK (2013) A novel MRI compatible soft tissue indentor and fibre Bragg grating force sensor. Med Eng Phys 35(4):486–499. doi:10.1016/j.medengphy.2012.06.014

    Article  Google Scholar 

  17. Pankow M, Justusson B, Waas AM (2010) Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl Opt 49(17):3418–3427

    Article  Google Scholar 

  18. Yu L, Pan B (2016) Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation. Opt Lasers Eng 87:120–128

    Article  Google Scholar 

  19. Pan Z, Xia S, Gdoutou A, Ravichandran G (2015) Diffraction-assisted image correlation for three-dimensional surface profiling. Exp Mech 55(1):155–165

    Article  Google Scholar 

  20. Pan B, Wang Q (2013) Single-camera microscopic stereo digital image correlation using a diffraction grating. Opt Express 21(21):25056–25068

    Article  Google Scholar 

  21. Wu L, Zhu J, Xie H (2015) Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: validation and application. Appl Opt 54(26):7842–7850. doi:10.1364/AO.54.007842

    Article  Google Scholar 

  22. Wu LF, Zhu JG, Xie HM, Zhang Q (2016) An accurate method for shape retrieval and displacement measurement using bi-prism-based single lens 3D digital image correlation. Exp Mech 56(9):1–14

    Article  Google Scholar 

  23. Wu L, Zhu J, Xie H, Zhou M (2016) Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: systematic error analysis and correction. Opt Lasers in Eng 87:129–138

    Article  Google Scholar 

  24. Xia S, Gdoutou A, Ravichandran G (2013) Diffraction assisted image correlation: a novel method for measuring three-dimensional deformation using two-dimensional digital image correlation. Exp Mech 53(5):755–765

    Article  Google Scholar 

  25. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):152–154

    Article  Google Scholar 

  26. Bing P, Hui-min X, Tao H, Asundi A (2009) Measurement of coefficient of thermal expansion of films using digital image correlation method. Polym Test 28(1):75–83. doi:10.1016/j.polymertesting.2008.11.004

    Article  Google Scholar 

  27. Bouguet JY (2013) Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc

  28. Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122. doi:10.1007/s11340-015-0009-1

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (11232008, 11372037, and 11572041) and the Program for New Century Excellent Talents in University (NCET-12-0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Liu, Z.W. & Gao, J.X. 3D Deformation Measurement of Soft Material under Indentation Using Improved Diffraction-Assisted Image Correlation. Exp Mech 58, 87–98 (2018). https://doi.org/10.1007/s11340-017-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0326-7

Keywords

Navigation