Skip to main content
Log in

In-Situ CT Damage Analysis of Metal Inserts Embedded in Carbon Fiber-Reinforced Plastics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Carbon-fiber-reinforced plastics (CFRPs) are gaining increasing applicability to lightweight structures (e.g., automotive applications) due to their outstanding mechanical properties. High-performance parts can be fabricated from CFRPs, but they have the disadvantages of low shear and bearing strength. To achieve detachable connections and introduce loads without decreasing the load-bearing capacity of the composite, it is important to use mechanical fasteners without drilling into the parts. To accomplish this, metal elements called inserts are embedded in the CFRP laminate. Damage behavior in a CFRP under tensile conditions has several different mechanisms, depending primarily on the deformation of the insert. This research investigates the in-situ failure behavior of the composite under tensile loads by investigating the deformation of the insert via computed tomography (CT). The results are also used for validation of the insert’s deformation using a finite-element model (FEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Camanho PP, Lambert M (2006) A design methodology for mechanically fastened joints in laminated composite materials. Compos Sci Technol 66(15):3004–3020

    Article  Google Scholar 

  2. Ueda M, Miyake S, Hasegawa H, Hirano Y (2012) Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet. Compos Struct 94 (11), S. 3388–3393

  3. Falconieri D, Franco F (2015) The effect of titanium insert repairs on the static strength of CFRP coupons and joints. Compos Struct 134, S. 799–810

  4. Kolesnikov B, Herbeck L, Fink A (2008) CFRP/titanium hybrid material for improving composite bolted joints. Compos Struct 83 (4), S. 368–380

  5. Mara V, Haghani R, Al-Emrani M (2015) Improving the performance of bolted joints in composite structures using metal inserts. J Compos Mater 50(21):S. 3001–3018

  6. Gebhardt J, Fleischer J (2014) Experimental investigation and performance enhancement of inserts in composite parts. Procedia CIRP 23, S. 7–12

  7. Ferret B, Anduze C, Nardari C (1998) Metal inserts in structural composite materials manufactured by RTM. Compos Part A (29), S. 693–700

  8. Hopmann C, Fecher ML, Lineman L, Bastian R, Gries T, Schnabel A, Greb C (2013) Comparison of the properties of Onserts and inserts for a high volume production of structural composite parts. Int J Plast Technol 9 (4), S. 179–206

  9. Fleischer J, Gebhardt J (2013) Experimental investigation of metal inserts embedded in composite parts manufactured by the RTM process

  10. Schwarz M, Magin M, Peil C, Schürmann H (2004) Thin-walled FRP-laminates and local bending moments - incompatible or solvable by a skillful design?

  11. Schwarz M, Schürmann H, Fickel M, Magin M, Peil C (2007) Designing of punctual joints acting in fibre-reinforced plastics. Konstruktion 6, S. 90–96

  12. Gebhardt J, Pottmeyer F, Fleischer J, Weidenmann K (2015) Characterization of metal inserts embedded in carbon fiber reinforced plastics. MSF 825-826, S. 506–513

  13. Stoessel R, Kiefel D, Oster R, Diewel B, Llopart Prieto L (2011) μ-computed tomography for 3D porosity evaluation in carbon fiber reinforced plastics (CFRP)

  14. Schell J, Renggli M, van Lenthe GH, Müller R, Ermanni P (2006) Micro-computed tomography determination of glass fibre reinforced polymer meso-structure. Compos Sci Technol 66 (13), S. 2016–2022

  15. Tan KT, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Part B 42 (4), S. 874–884

  16. Nouri H, Lubineau G, Traudes D (2013) An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates. Compos Struct 106, S. 529–536

  17. Ireman T, Ranvik T, Eriksson I (2000) On damage development in mechanically fastened composite laminate. Compos Struct 49, S. 151–171

  18. Dietrich S, Weidenmann K, Elsner P (2014) 3D tomographic characterization of sandwich structures. NDT&E Int 62, S. 77–84

  19. Elliott JA, Windle AH, Hobdell JR, Eeckhaut G, Oldman RJ, Ludwig W. et al (2002) In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed tomography. J Mater Sci 37, S. 1547–1555

  20. Adrien J, Maire E, Gimenez N, Sauyant-Moynot V (2007) Experimental study of the compression behavior of syntactic foams by in situ X-ray tomography. Acta Mater 55, S. 1667–1679

  21. Hufenbach W, Böhm R, Gude M, Berthel M, Hornig A, Ručevskis S, Andrich M (2012) A test device for damage characterisation of composites based on in situ computed tomography. Compos Sci Technol 72 (12), S. 1361–1367

  22. Scott, A. E.; Mavrogordato, M.; Wright, P.; Sinclair, I.; Spearing, S. M.: In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography. Compos Sci Technol 71 (12), S. 1471–1477, 2011

  23. Moffat, A. J.; Wright, P.; Helfen, L.; Baumbach, T.; Johnson, G.; Spearing, S. M.; Sinclair, I.: In situ synchrotron computed laminography of damage in carbon fibre–epoxy [90/0]s laminates. Scr Mater 62 (2), S. 97–100, 2010

  24. Wright, P.; Fu, X.; Sinclair, I.; Spearing, S. M.: Ultra high resolution computed tomography of damage in notched carbon fiber--epoxy composites. J Compos Mater 42 (19), S. 1993–2002, 2008

  25. Toda, H.; Maire, E.; Yamauchi, S.; Tsuruta, H.; Hiramatsu, T.; Kobayashi, M.: In situ observation of ductile fracture using X-ray tomography technique. Acta Mater 59 (5), S. 1995–2008, 2011

  26. Chateau, C.; Gélébart, L.; Bornert, M.; Crépin, J. Boller, E.; Sauder, C.; Ludwig, W.: In situ X-ray microtomography characterisation of damage in SiCf/SiC minicomposites. Compos Sci Technol 71, S. 916–924, 2011

  27. Miguélez, M. H.; Zaera, R.; Molinari, A.; Cheriguene, R.; Rusinek, A.: Residual stresses in orthogonal cutting of metals. J Therm Stresses 32 (3), S. 269–289, 2009

  28. Chandra, N.: Analysis of interfacial behavior in MMCs and IMCs by the use of thin-slice push-out tests. Compos Sci Technol 54 (1), S. 87–100, 1995

  29. Aymerich, F.; Dore, F.; Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos Sci Technol 68 (12), S. 2383–2390, 2008

  30. Al-Zand AW, Hamidon W, Badaruzzaman W, Mutalib AA, Hilo SJ (2015) Modelling the delamination failure along the CFRP-CFST beam interaction surface using different finite element techniques. J Eng Sci Technol, S. 1–15

  31. Kapidžić, Z.; Ansell, H.; Schön, J.; Simonsson, K.: Quasi-static bearing failure of CFRP composite in biaxially loaded bolted joints. Compos Struct 125, S. 60–71, 2015

  32. Reeb, A.; Walter, V.; Schulze, V.; Weidenmann, K.: Characterization of a hybrid Al2O3-aluminum matrix composite manufactured via composite extrusion. J Compos Mater 50 (8), S. 1099–1108, 2016

  33. Kuramato, T.; Ohshita, M.; Maeda, K.; Ueda, Y.: Sharpening of an energy band of diagnostic x-ray spectrum with metal filters. IFMBE Proc 14 (3), S. 1533–1536, 2006

  34. Barbero EJ (2013) Finite element analysis of composite materials using Abaqus: CRC Press,Taylor & Francis Group (Composite materials, design and analysis)

  35. Schön, J.: Coefficient of friction and wear of a carbon fiber epoxy matrix composite. Wear 257 (3–4), S. 395–407, 2004

  36. Both JC (2014) Tragfähigkeit von CFK-Metall-Laminaten unter mechanischer und thermischer Belastung. Dissertation. Technische Universität München, München. Lehrstuhl für Leichtbau

  37. Zinn, C.; Schaper, M.; Serna, J.; Meiners, D.; Wang, Z.; Troester, T. et al.: Shear edge tests: a benchmark in investigating the influence of different surface pretreatment methods on the shear stress of intrinsically manufactured metal-CFRP hybrids. Int J Autom Compo 2 (3/4), S. 244–271, 2016

Download references

Acknowledgements

This paper is based on investigations of Subproject 3, “Fundamental research of intrinsically produced FRP-metal composites – from embedded insert to load bearing hybrid structure”- of the priority program 1712 “Intrinsic hybrid composites for lightweight load-bearings”, which is kindly supported by the German Research Foundation (DFG). The authors kindly acknowledge the Institute for Production Science (wbk) of KIT for the manufacturing of the specimen in cooperation with the above-mentioned subproject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pottmeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pottmeyer, F., Bittner, J., Pinter, P. et al. In-Situ CT Damage Analysis of Metal Inserts Embedded in Carbon Fiber-Reinforced Plastics. Exp Mech 57, 1411–1422 (2017). https://doi.org/10.1007/s11340-017-0312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0312-0

Keywords

Navigation