Skip to main content
Log in

A Universal Dynamic Inflation Test for Soft Tissue, Tissue Analogues and Grafts

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a new dynamic inflation experiment method for identifying the viscoelastic parameters of blood vessels and grafts. The material parameters are estimated only from the recorded damped natural pressure oscillation and from the initial geometry of the tested specimens. The identified parameters are dynamic compliance, the damping ratio, fictitious fluid viscosity, frequency, and, for tubular samples, the elastic incremental modulus and the wall viscosity. Several experiments with latex tubular samples were performed to check the suitability of this unique experimental method, and to estimate the limits of its applicability (effects of operational parameters, e.g. the geometry of the samples and the viscosity of the working fluids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Courtial EJ, Orkisz M, Douek PC, Huet L, Fulchiron R (2015) Identifying hyper-viscoelastic model parameters from an inflation-extension test and ultrasound images. Exp Mech 55 (7):1353. doi:10.1007/s11340-015-0042-0

    Article  Google Scholar 

  2. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1/3):1. doi:10.1023/a:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  3. Haslach HW (2011) Maximum dissipation non-equilibrium thermodynamics and its geometric structure. Springer Science Business Media. doi:10.1007/978-1-4419-7765-6

  4. Fung YC (1981) Biomechanics. Springer Science Business Media. doi:10.1007/978-1-4757-1752-5

  5. Long A, Rouet L, Bissery A, Rossignol P, Mouradian D, Sapoval M (2005) Compliance of abdominal aortic aneurysms evaluated by tissue Doppler imaging: correlation with aneurysm size. J Vasc Surg 42 (1):18. doi:10.1016/j.jvs.2005.03.037

    Article  Google Scholar 

  6. Riley WA, Barnes RW, Evans GW, Burke GL (1992) Ultrasonic measurement of the elastic modulus of the common carotid artery. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 23(7):952. doi:10.1161/01.str.23.7.952

    Article  Google Scholar 

  7. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H, Wystrychowski W, Zagalski K, Maruszewski M, Jones AL, Cierpka L, de la Fuente LM, L’Heureux N (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542. doi:10.1016/j.biomaterials.2008.11.011

  8. Zhang W, Liu Y, Kassab GS (2007) Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue. AJP: Heart Circ Physiol 293(4):H2355. doi:10.1152/ajpheart.00423.2007

    Google Scholar 

  9. Li D, Xu D, Li P, Wei J., Yang K, Zhao C (2013) Viscoelastic evaluation of fetal umbilical vein for reconstruction of middle cerebral artery. Neural Regen Res 8(32):3055. doi:10.3969/j.issn.1673-5374.2013.32.009. Cited By 1

    Google Scholar 

  10. Ferrara A, Morganti S, Totaro P, Mazzola A, Auricchio F (2016) Human dilated ascending aorta: mechanical characterization via uniaxial tensile tests. J Mech Behav Biomed Mater 53:257. doi:10.1016/j.jmbbm.2015.08.021

    Article  Google Scholar 

  11. Peña JA, Martínez MA, Peña E (2015) Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J Mech Behav Biomed Mater 50:55. doi:10.1016/j.jmbbm.2015.05.024

    Article  Google Scholar 

  12. Trabelsi O, Davis FM, Rodriguez-Matas JF, Duprey A, Avril S (2015) Patient specific stress and rupture analysis of ascending thoracic aneurysms. J Biomech 48(10):1836. doi:10.1016/j.jbiomech.2015.04.035

    Article  Google Scholar 

  13. Bessems D, Giannopapa CG, Rutten MC, van de Vosse FN (2008) Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. J Biomech 41(2):284. doi:10.1016/j.jbiomech.2007.09.014

  14. Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96. doi:10.1016/s1369-7021(11)70059-1

    Article  Google Scholar 

  15. Labrosse MR, Beller CJ, Mesana T, Veinot JP (2009) Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J Biomech 42(8):996. doi:10.1016/j.jbiomech.2009.02.009

    Article  Google Scholar 

  16. Veselý J, Horný L, Chlup H, Adámek T, Krajíček M, žitný R (2015) Constitutive modeling of human saphenous veins at overloading pressures. J Mech Behav Biomed Mater 45:101. doi:10.1016/j.jmbbm.2015.01.023

    Article  Google Scholar 

  17. Horný L, Chlup H, žitný R, Adámek T (2010) Constitutive modeling of coronary bypass graft with incorporated torsion. Metalurgija 49(2):273

    Google Scholar 

  18. Bergel DH (1961) The static elastic properties of the arterial wall. J Physiol 156(3):445. doi:10.1113/jphysiol.1961.sp006686

    Article  Google Scholar 

  19. Bergel DH (1961) The dynamic elastic properties of the arterial wall. J Physiol 156(3):458. doi:10.1113/jphysiol.1961.sp006687

    Article  Google Scholar 

  20. Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18(3):278. doi:10.1161/01.res.18.3.278

    Article  Google Scholar 

  21. Papageorgiou G, Jones N (1988) Circumferential and longitudinal viscoelasticity of human iliac arterial segments in vitro. J Biomed Eng 10(1):82. doi:10.1016/0141-5425(88)90031-3

    Article  Google Scholar 

  22. Giannopapa CG, Kroot JMB, Tijsseling AS, Rutten MCM, van de Vosse FN (2010) Wave propagation in thin-walled aortic analogues. J Fluids Eng 132(2):021104. doi:10.1115/1.4000792

  23. Valdez-Jasso D, Haider M, Banks H, Santana D, German Y, Armentano R, Olufsen M (2009) Analysis of viscoelastic wall properties in ovine arteries. IEEE Trans Biomed Eng 56(2):210. doi:10.1109/tbme.2008.2003093

    Article  Google Scholar 

  24. Valdez-Jasso D, Bia D, Zócalo Y, Armentano RL, Haider MA, Olufsen MS (2011) Linear and nonlinear viscoelastic modeling of aorta and carotid pressure area dynamics under in vivo and ex vivo conditions. Ann Biomed Eng 39(5):1438. doi:10.1007/s10439-010-0236-7

    Article  Google Scholar 

  25. Mascarenhas EJ, Peters MF, Nijs J, Rutten MC, van de Vosse FN, Lopata RG (2016) Assessment of mechanical properties of porcine aortas under physiological loading conditions using vascular elastography. J Mech Behav Biomed Mater 59:185. doi:10.1016/j.jmbbm.2015.12.009

  26. Hromadka D, Chlup H, žitný R (2016) Integral methods for describing pulsatile flow. Acta Polytech 56(2):99. doi:10.14311/ap.2016.56.0099

    Article  Google Scholar 

  27. Bird R, Stewart W, Lightfoot E (2007) Transport Phenomena. Wiley International edition. Wiley

  28. Gundogdu MY, Çarpinlioglu MO (1999) Present state of art on pulsatile flow theory. Part 1. Laminar and transitional flow regimes. JSME Int J Ser B 42(3):384. doi:10.1299/jsmeb.42.384

    Article  Google Scholar 

  29. Çarpinlioglu MO, Gundogdu MY (2001) A critical review on pulsatile pipe flow studies directing towards future research topics. Flow Meas Instrum 12(3):163. doi:10.1016/s0955-5986(01)00020-6

    Article  Google Scholar 

  30. Avanzini A, Battini D, Bagozzi L, Bisleri G (2014) Biomechanical evaluation of ascending aortic aneurysms. Biomed Res Int 2014:1. doi:10.1155/2014/820385

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project of Ministry of Health CR 15-27941A. I would like to thanks to the head of the Mechanical testing laboratory, Radek Sedláček for an excellently performed pulsatile measurement on the tensile machine and for the provision of experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hromádka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hromádka, D., Chlup, H., Nečas, M. et al. A Universal Dynamic Inflation Test for Soft Tissue, Tissue Analogues and Grafts. Exp Mech 57, 1423–1433 (2017). https://doi.org/10.1007/s11340-017-0311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0311-1

Keywords

Navigation