Skip to main content
Log in

Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture test results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Goldstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fracture 10:507

    Article  Google Scholar 

  2. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng-T ASME 85:516

    Google Scholar 

  3. Sih GC (1973) Some basic problems in fracture mechanics and new concepts. Eng Fract Mech 5(2):365

    Article  MathSciNet  Google Scholar 

  4. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fracture 10(3):305

    Article  Google Scholar 

  5. Cotterell B (1965) On brittle fracture paths. Int J Fract Mech 1:96

    Google Scholar 

  6. Wu CW (1978) Maximum energy release rate criterion applied to a tension-compression specimen with crack. J Elasticity 8(3):235

    Article  MATH  Google Scholar 

  7. Williams ML (1957) On stress distribution at base of stationary crack. J Appl Mech 24(56):109

    MathSciNet  MATH  Google Scholar 

  8. Rubinstein AA (1990) Crack-path effect on material toughness. J Appl Mech 112:97

    Article  Google Scholar 

  9. Rubinstein AA (1991) Mechanics of the crack path formation. Contractor Report 185143 NASA

  10. Rubinstein AA (2003) Computational aspects of crack path development simulation in materials with nonlinear process zone. Int J Fract 119:L15

    Article  Google Scholar 

  11. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321

    Article  Google Scholar 

  12. Moës N., Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131

    Article  MATH  Google Scholar 

  13. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2):342

    Article  MATH  Google Scholar 

  14. Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fracture 16(2):155. doi:10.1007/BF00012619

    Article  Google Scholar 

  15. Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49 (1):91. doi:10.1016/S0022-5096(00)00022-3

    Article  MATH  Google Scholar 

  16. Micro-Measurements (2010) Measurement of thermal expansion coefficient using strain gages. Tech. Rep. TN-513-1 Vishay precision group

  17. Micro-Measurements (2014) Strain gage thermal output and gage factor variation with temperature. Tech. Rep. TN-504-1 Vishay precision group

  18. AIH Committee Metals Handbook, vol. 1, 10th edn (ASM International 1990)

  19. Corning Inc. Properties of PYREX®;, PRYEXPLUS®;, and low actinic PYREX code 7740 glasses

  20. (2007). Hexion. Technical data sheet, Epikurecuring agent 3140. www.hexion.com/Products/TechnicalDataSheet.aspx?id=2654

  21. (2005). Technical data sheet, Hysol Product U-05FL

  22. SIMULIA, ABAQUS Analyis User’s Guide, 6th edn. (2014). Section 22.5.1

  23. Ramesh K (2000) Digital photoelasticitiy. Springer

  24. Suo Z, Hutchinson JW (1989) Steady-state cracking in brittle substrates beneath adherent films. Int J Solids Struct 25(11):1337

    Article  Google Scholar 

  25. SIMULIA (2014) ABAQUS Analyis User’s Guide 6th edn

  26. Kayashi K, Nemat-Nasser S (1981) Energy-release rate and crack kinking under combined loading. Trans of the ASME 48:520

    Article  MATH  Google Scholar 

  27. Melin S (1994) Accurate data for stress intensity factors at infinitesimal kinks. J Appl Mech 61:467

    Article  MATH  Google Scholar 

  28. He M, Bartlett A, Evans AG, Hutchinson J.W (1991) Kinking of a crack out of an interface: role of in-plane stress. J Am Ceram Soc 74(4):767

    Article  Google Scholar 

  29. Amestoy M, Leblond JB (1992) Crack paths in plane situations – II. Detailed form of the expansions of the stress intensity factors. Int J Solids Struct 29(4):465

    Article  MathSciNet  MATH  Google Scholar 

  30. Zehnder AT Fracture Mechanics (Springer, 2012), Lecture Notes in Applied and Computational Mechanics, vol 62, chap. 4.3.4

  31. Sandia National Laboratories (2015) Sierra/solidmechanics User’s Guide 4th edn

  32. Fracture Analysis Consultants Inc (2016) FRANC3D Reference Manual, 7th edn

Download references

Acknowledgements

The authors thank Garth Rohr and Corey Gibson for assistance with experiments, John Laing for valuable strain gage discussions, and John Emery for assistance with FRANC3D crack propagation calculations. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DENA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.J. Grutzik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grutzik, S., Reedy, E. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen. Exp Mech 58, 1–10 (2018). https://doi.org/10.1007/s11340-017-0297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0297-8

Keywords

Navigation