Experimental Mechanics

, Volume 57, Issue 7, pp 1081–1090 | Cite as

Evaluation of the Mechanical Properties of TRISO Particles Using Nanoindentation and Ring Compression Testing

  • D. FrazerEmail author
  • J. Szornel
  • D. L. Krumwiede
  • K. A. Terrani
  • P. Hosemann


Tristructural-isotropic (TRISO) fuel particles are being investigated as a potential fuel for both current and advanced reactors. Due to the size of the particles (<1 mm in diameter with a silicon carbide layer thickness of 30–50 μm), traditional mechanical testing is a challenge, and investigations are limited to micro-scale mechanical testing techniques. In the work presented here, ring crush tests of TRISO particles were performed, and the results are compared with nanoindentation measurements of particles from the same manufactured batch. The elastic modulus results from the nanoindentation and the ring crush tests are found to be in good agreement. In addition, an innovative technique for studying helium implantation effects on the material was investigated utilizing an ORION NanoFab Helium Ion Microscope.


Tristructural-isotropic (TRISO) fuel particles Nanoindentation Small scale mechanical testing (SSMT) Helium bubbles Micro/Nano scale mechanical testing 



The authors would like to thank Dr. Frances Allen for assistance with the ORION NanoFab and for helpful comments on the manuscript. In addition, the authors would like to thank the BNC at UC Berkeley for the use of the ORION NanoFab instrument. The ORION nanofab was funded through the NSF-MRI grant #1338139.


  1. 1.
    Hosemann P, Martos JN, Frazer D, Vasudevamurthy G, Byun TS, Hunn JD, Jolly BC, Terrani K, Okuniewski M (2013) Mechanical characteristics of SiC coating layer in TRISO fuel particles. J Nucl Mater 442:133–142Google Scholar
  2. 2.
    Rohbeck N, Tsivoulas D, Shapiro IP, Xiao P, Knol S, Escleine J-M, Perez M (2015) In-situ nanoindentation of irradiated silicon carbide in TRISO particle fuel up to 500°C. J Nucl Mater 465:692–694Google Scholar
  3. 3.
    Tan J, Meadows PJ, Zhang D, Xi C, Lopez-Honorato E, Zhao X, Yang F, Abram T, Xiao P (2009) Young’s modulus measurements of SiC coatings on spherical particles by using nanoindentation. J Nucl Mater 393:22–29CrossRefGoogle Scholar
  4. 4.
    Kim W-J, Park JN, Cho MS, Park JY (2009) Effect of coating temperature on properties of the SiC layer in TRISO-coated particles. J Nucl MaterGoogle Scholar
  5. 5.
    Frazer D, Abad MD, Krumwiede D, Back CA, Khalifa HE, Deck CP, Hosemann P (2015) Localized mechanical property assessment of SiC/SiC composite materials. Compos A: Appl Sci Manuf 70:93–101CrossRefGoogle Scholar
  6. 6.
    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski RJ, Hasegawa A, Snead LL (2014) Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater 448:448–476CrossRefGoogle Scholar
  7. 7.
    Stone JG, Schleicher R, Deck CP, Jacobsen GM, Khalifa HE, Back CA (2015) Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding. J Nucl Mater 466:682–697CrossRefGoogle Scholar
  8. 8.
    Snead LL, Nozawa T, Katoh Y, Byun TS, Kondo S, Petti DA (2007) Handbook of SiC properties for fuel performance modeling. J Nucl Mater 371:329–377CrossRefGoogle Scholar
  9. 9.
    Nickel H, Nabielek H, Pott G, Mehner AW (2007) Long time experience with the development of HTR fuel elements in Germany. Nucl Eng Des 217:141–151CrossRefGoogle Scholar
  10. 10.
    Meyer MK, Fielding R, Gan J (2007) Fuel development for gas-cooled fast reactors. J Nucl Mater 371:281–287CrossRefGoogle Scholar
  11. 11.
    Kim WJ, Kim D, Park JY (2013) Fabrication and material issues for the application of SiC composites to LWR fuel cladding. Nucl Eng Technol 45:565–572CrossRefGoogle Scholar
  12. 12.
    Deck CP, Jacobsen GM, Sheeder J, Gutierrez O, Zhang J, Stone J, Khalifa HE, Back CA (2015) Characterization of SiC-SiC composites for accident tolerant fuel cladding. J Nucl Mater 466:667–681CrossRefGoogle Scholar
  13. 13.
    Snead LL, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M (2011) Silicon carbide composites as fusion power reactor structural materials. J Nucl Mater 417:330–339CrossRefGoogle Scholar
  14. 14.
    Saito S, Tanaka T, Sudo Y, Baba O, Shindo M, Shiozawa S, Kobayashi F, Kurihara R, Hada K, Yamashita K, Kawasaki K, Iyoku T, Kunitomi K, Maruyama S (1994) Design of High Temperature Test Reactor (HTTR), JAERI-1332, Japan Atomic Energy Research InstituteGoogle Scholar
  15. 15.
    Terrani KA, Snead LL, Gehin JC (2012) Microencapsulated fuel technology for commercial light water and advanced reactor application. J Nucl Mater 427:209–224CrossRefGoogle Scholar
  16. 16.
    Mills P, Soto R, Gibbs G (2007) Next generation nuclear plant pre-conceptual Design report, (INL/EXT-07-12967, Idaho National Laboratory, Idaho Falls, ID)Google Scholar
  17. 17.
    Forsberg CW, Peterson PF, Pickard P (2003) Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity. Nucl Technol 144:289–302CrossRefGoogle Scholar
  18. 18.
    Forsberg CW, Peterson PF, Zhao H (2006) Sustainability and economics of the advanced high-temperature reactor. J Energy Eng 132:109–115CrossRefGoogle Scholar
  19. 19.
    International Atomic Energy Agency (1997) Fuel performance and fission product behavior in gas cooled reactors, IAEA-TECDOC-978. IAEA, ViennaGoogle Scholar
  20. 20.
    Silady FA, Parme LL (1989) The safety approach of the modular high temperature gas cooled reactor (MHTGR). 11th International Conference on the HTGR, DimitrovgradGoogle Scholar
  21. 21.
    Powers J, Wirth B (2010) A review of TRISO fuel performance models. J Nucl Mater 405:74–82CrossRefGoogle Scholar
  22. 22.
    Morris RN, Petti DA, Power DA, Boyack BE, Rubin MB (2004) TRISO-Coated Particle Fuel Phenomenon Identification and Ranking Tables (PIRTs) for Fission Product Transport Due to Manufacturing, Operations, and Accidents: Main Report, (NUREG/CR-6844, Volume 1)Google Scholar
  23. 23.
    Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) Issues and advances in SiCf/SiC composites development for fusion reactors. J Nucl Mater 329–333:56–65Google Scholar
  24. 24.
    Li BS, Du YY, Wang ZG, Wei KF, Zhang HP, Yao CF, Chang HL, Sun JR, Cui MH, Sheng YB, Pang LL, Zhu YB, Gao X, Luo P, Zhu HP, Wang J, Wang D (2015) Transmission electron microscopy investigations of bubble formation in he-implanted polycrystalline SiC. Vacuum 113:75–83CrossRefGoogle Scholar
  25. 25.
    Snead LL, Zinkle SJ Threshold irradiation dose for amorphization of silicon carbide. Oak Ridge National Laboratory.Google Scholar
  26. 26.
    Li BS, Wang ZG, Zhang CH, Wei KF, Yao CF, Sun JR, Cui MH, Li YF, Zhu HP, Du YY, Zhu YB, Pang LL, Song P, Wang J (2014) Evolution of strain and mechanical properties upon annealing in he-implanted 6H-SiC. J Nucl Mater 455:116–121CrossRefGoogle Scholar
  27. 27.
    Beaufort MF, Pailloux F, Declemy A, Barbot JF (2003) Transmission electron microscopy investigations of damage induced by high energy helium implantation in 4H–SiC. J Appl Phys 94:7116CrossRefGoogle Scholar
  28. 28.
    Kralik V, Nemecek J (2014) Comparison of nanoindentation techniques for local mechanical quantification of aluminum alloy. Mater Sic Eng A 618:118–128CrossRefGoogle Scholar
  29. 29.
    Zhao X, Langford RM, Tan J, Xiao P (2008) Mechanical properties of SiC coatings on spherical particles measured using the micro-beam method. Scr Mater 59:39–42CrossRefGoogle Scholar
  30. 30.
    Di Maio D, Roberts SG (2005) Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J Mater Res 20:299–302CrossRefGoogle Scholar
  31. 31.
    Lopez-Honorato E, Meadows PJ, Tan J, Xiao P (2008) Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition. J Mater Res 23:1785–1796CrossRefGoogle Scholar
  32. 32.
    Zhang H, López-Honorato E, Javed A, Shapiro I, Xiao P (2012) A study of the microstructure and vickers indentation fracture toughness of silicon carbide coatings on triso fuel particles. J Am Ceram Soc 95:1086–1092Google Scholar
  33. 33.
    van Gastel R, Barriss L, Sanford C, Hlawacek G, Scipioni L, Merkle AP, Voci D, Fenner C, Zandvliet HJW, Poelsema B (2011) Design and performance of a near ultra high vacuum helium ion microscope. Microsc Microanal 17(S2):928–929CrossRefGoogle Scholar
  34. 34.
    Veligura V, Hlawacek G, Berkelaar RP, Gaste RV, Zandvliet HJW, Poelsema B (2013) Digging gold: keV He+ ion interact.tion with Au. Beilstein J. Nanotechnol 4:453–460Google Scholar
  35. 35.
    Ogbuji LUJT, Opila EJ (1995) A comparison of the oxidation kinetics of SiC and Si3 N 4. J Electrochem Soc 142(3):925–930CrossRefGoogle Scholar
  36. 36.
    Bongartz K, Gyarmati E, Schuster H, Tauber K (1976) Brittle ring test – method for measuring strength and Youngs modulus on coatings of Htr fuel particles. J Nucl Mater 62:123–137CrossRefGoogle Scholar
  37. 37.
    Timosohenko S (1956) Strength of Materials Part 1, 2nd. Van Nostrand Co, New York, pp 365, 369, 387, 388Google Scholar
  38. 38.
    Bongartz K, Gyarmati E, Nickel H, Schuster H, Winter W (1972/73) Measurement of Young’s modulus and fracture stress on HTR particle coatings by the brittle ring test. J Nucl Mater 45:261–264CrossRefGoogle Scholar
  39. 39.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  40. 40.
    Ziegler JR et al (2006) SRIM – The Stopping and Range of Ions in Matter.
  41. 41.
    Minato K, Fukuda K, Ikawa K (1982) Strength of silicon-carbide coating layers of fuel particles for high temperature gas-cooled reactors. J Nucl Sci Technol 19(1):69–77CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2017

Authors and Affiliations

  • D. Frazer
    • 1
    Email author
  • J. Szornel
    • 1
  • D. L. Krumwiede
    • 1
  • K. A. Terrani
    • 2
  • P. Hosemann
    • 1
  1. 1.Department of Nuclear EngineeringUniversity of California BerkeleyBerkeleyUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations