Skip to main content

Reconstruction and Analysis of Impact Forces on a Steel-Beam-Reinforced Concrete Deck

Abstract

Impact forces applied to a steel-beam-reinforced concrete deck at various positions are reconstructed using an inverse algorithm based on dynamic signals captured using single-axis accelerometers. A deconvolution technique in the time domain utilising dynamic signals is adopted to reconstruct the impact force. Two deconvolution approaches are investigated, one with a transfer function in the convolution integral and the other without an explicit transfer function. The roles of the transfer function and regularisation are evaluated, addressing the efficiency of the methods and accuracy of reconstructed forces based on the coefficient of their correlation with the actual impact forces. The effects of some parameters on the accuracy of reconstructed impact force are studied, including the locations of impact and measurement points, the characteristics of reference impact force and the stiffness of impact hammer head.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Khoo SY et al (2014) Impact force identification with pseudo-inverse method on a lightweight structure for under-determined, even-determined and over-determined cases. Int J Impact Eng 63:52–62

    Article  Google Scholar 

  2. 2.

    Inoue H, Harrigan JJ, Reid SR (2001) Review of inverse analysis for indirect measurement of impact force. Appl Mech Rev 54:503

    Article  Google Scholar 

  3. 3.

    Sanchez J, Benaroya H (2014) Review of force reconstruction techniques. J Sound Vib 333(14):2999–3018

    Article  Google Scholar 

  4. 4.

    Park J, Ha S, Chang F-K (2009) Monitoring impact events using a system-identification method. AIAA J 47(9):2011–2021

    Article  Google Scholar 

  5. 5.

    Akhavan SEW, Farhad KC (2000) Prediction of impact contact forces of composite plates using fiber optic sensors and neural networks. Mech Compos Mater Struct 7(2):195–205

    Article  Google Scholar 

  6. 6.

    Chandrashekhara K, Okafor AC, Jiang Y (1998) Estimation of contact force on composite plates using impact-induced strain and neural networks. Compos Part B 29(4):363–370

    Article  Google Scholar 

  7. 7.

    Jones RT, Sirkis JS, Friebele E (1997) Detection of impact location and magnitude for isotropic plates using neural networks. J Intell Mater Syst Struct 8(1):90–99

    Article  Google Scholar 

  8. 8.

    LeClerc J et al (2007) Impact detection in an aircraft composite panel—a neural-network approach. J Sound Vib 299(3):672–682

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jacquelin E, Bennani A, Hamelin P (2003) Force reconstruction: analysis and regularization of a deconvolution problem. J Sound Vib 265(1):81–107

    Article  Google Scholar 

  10. 10.

    Chang C, Sun C (1989) Determining transverse impact force on a composite laminate by signal deconvolution. Exp Mech 29(4):414–419

    MathSciNet  Article  Google Scholar 

  11. 11.

    Wu E, Tsai C-Z, Tseng L-H (1998) A deconvolution method for force reconstruction in rods under axial impact. J Acoust Soc Am 104(3):1418–1426

    Article  Google Scholar 

  12. 12.

    Wu E, Tsai T-D, Yen C-S (1995) Two methods for determining impact-force history on elastic plates. Exp Mech 35(1):11–18

    Article  Google Scholar 

  13. 13.

    Doyle J (1987) Experimentally determining the contact force during the transverse impact of an orthotropic plate. J Sound Vib 118(3):441–448

    Article  Google Scholar 

  14. 14.

    Doyle JF (1997) A wavelet deconvolution method for impact force identification. Exp Mech 37(4):403–408

    MathSciNet  Article  Google Scholar 

  15. 15.

    Martin M, Doyle J (1996) Impact force location in frame structures. Int J Impact Eng 18(1):79–97

    Article  Google Scholar 

  16. 16.

    Martin M, Doyle JF (1996) Impact force identification from wave propagation responses. Experiment Mech 18(1)

  17. 17.

    Boukria Z, Perrotin P, Bennani A (2011) Experimental impact force location and identification using inverse problems: application for a circular plate. Int J Mech 5(1):48–55

    Google Scholar 

  18. 18.

    Wu E, Yeh J-C, Yen C-S (1994) Impact on composite laminated plates: an inverse method. Int J Impact Eng 15(4):417–433

    Article  Google Scholar 

  19. 19.

    Boukria Z et al (2012) Structural monitoring: identification and location of an impact on a structurally dissipating rock-shed structure using the inverse method. Europ J Environment Civil Eng 16(1):20–42

    Article  Google Scholar 

  20. 20.

    Hu N, FUKUNAGA H (2005) A new approach for health monitoring of composite structures through identification of impact force. J Adv Sci 17(1):82–89

    Article  Google Scholar 

  21. 21.

    Hu N et al (2007) An efficient approach for identifying impact force using embedded piezoelectric sensors. Int J Impact Eng 34(7):1258–1271

    Article  Google Scholar 

  22. 22.

    Hu N et al (2007) Identification of impact forces on composite structures using an inverse approach. Struct Eng Mech 27(4):409–424

    Article  Google Scholar 

  23. 23.

    Laš V et al (2012) Reconstruction of impact force on curved panel using piezoelectric sensors. Proc Eng 48:367–374

    Article  Google Scholar 

  24. 24.

    Park CY et al (2012) Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors. Adv Compos Mater 21(5-6):357–369

    Article  Google Scholar 

  25. 25.

    Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Num Algorithms 6(1):1–35

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Gunawan FE (2012) Levenberg–Marquardt iterative regularization for the pulse-type impact-force reconstruction. J Sound Vib 331(25):5424–5434

    Article  Google Scholar 

  27. 27.

    Inman DJ (2001) Engineering vibration. Prentice-Hall

  28. 28.

    Meirovitch L (1986) Elements of vibration analysis. McGraw-Hill

  29. 29.

    Thomas GB, Finney RL, Weir MD (1988) Calculus and analytic geometry. vol. 7. Addison-Wesley Reading, MA

    Google Scholar 

  30. 30.

    Calvetti D et al (2000) Tikhonov regularization and the L-curve for large discrete ill-posed problems. J Comput Appl Math 123(1):423–446

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Hansen PC (1998) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. 4. Siam

  32. 32.

    Calvetti D, Reichel L, Shuibi A (2004) L-curve and curvature bounds for Tikhonov regularization. Num Algorithms 35(2-4):301–314

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Rezghi M, Hosseini SM (2009) A new variant of L-curve for Tikhonov regularization. J Comput Appl Math 231(2):914–924

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Kalhori H (2014) Impact force reconstruction on a concrete deck using a deconvolution approach. 8th Australasian Congress on Applied Mechanics: ACAM 8. ACT: Engineers Australia, Barton, pp 763–771

    Google Scholar 

  35. 35.

    Makki Alamdari M et al (2015) Spectral-based damage identification in structures under ambient vibration. J Comput Civil Eng:04015062

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Ye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalhori, H., Ye, L., Mustapha, S. et al. Reconstruction and Analysis of Impact Forces on a Steel-Beam-Reinforced Concrete Deck. Exp Mech 56, 1547–1558 (2016). https://doi.org/10.1007/s11340-016-0188-4

Download citation

Keywords

  • Impact force
  • Steel beam-reinforced concrete deck
  • Inverse algorithm
  • Transfer function
  • Accelerometers