Skip to main content

Failure Mechanisms of Plasterboard in Nail Pull Test Determined by X-ray Microtomography and Digital Volume Correlation


To design lightweight plasterboard and optimize the compromise between thermal resistance and mechanical strength, it is important to characterize its strength as assessed with the normative “Nail pull” test. Understanding the phenomenology of this test is the key to identifying the limiting factor in terms of load carrying capacity. In this work, the degradation mechanisms of lightweight plasterboard are analyzed via tests conducted in situ in a laboratory tomograph. Through the analysis of the kinematics by digital volume correlation, the different mechanisms at play up to failure mechanism have been identified, i.e., quasi-elastic regime, failure of the roller coating layer, core compaction and core failure. The compaction of the core by the collapse of porosity in compression is recognized as the limiting factor in terms of compressive strength and tearing resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. ASTM Standard C473-10, Standard Test Methods for Physical Testing of Gypsum Panel Products ASTM International, West Conshohocken, PA (2010) doi:10.1520/C0473-10,

  2. Wenk R J (1987) Gypsum board – opportunities and challenges. XIII Eurogypsum Congress

  3. Kuntze RA (2009) Gypsum: connecting science and technology ASTM international 100 Barr Harbor Drive PO Box C700 West Conshohocken, PA

  4. ASTM Standard C1396/C1396M-14, Standard Specification for Gypsum Board, ASTM International, West Conshohocken, PA (2014) doi:10.1520/C1396_C1396M,

  5. Peterson K (2000) Enginneered Gypsum Panels. Sixth International Conference on Gypsum, Ortech, International, Toronto

  6. Private communication from BPB Research Centre, London

  7. Byford et al Private communication from BPB Research Centre, London

  8. Cantwell P (2003) Failure mechanism of nail pull. BPB Group Technical Department, Report number: 21717

  9. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43

    Article  Google Scholar 

  10. Buffière JY, Maire E., Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305

    Article  Google Scholar 

  11. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619

    Article  Google Scholar 

  12. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    MATH  Google Scholar 

  13. Bouterf A, Adrien J, Maire E, Brajer X, Hild F, Roux S (2016) Identification of the crushing behavior of brittle foam. From indentation to oedometric tests. Submitted

  14. Meille S, Garboczi EJ (2001) Linear elastic properties of 2D and 3D models of porous materials made from elongated objects. Model Simul Mater Sci Eng 9:371–90

    Article  Google Scholar 

  15. Desrues J (2004) Tracking strain localization in geomaterials using computerized tomography. In: Otani J, Obara Y (eds) X-ray CT for Geomaterials, Balkema, pp 15–41

  16. Desrues J, Viggiani G, Bésuelle P (2006) Advances in X-ray tomography for geomaterials. Wiley / ISTE, London

    Book  Google Scholar 

  17. Stock SR (2008) Recent advances in X-Ray microtomography applied to materials. Int Mat Rev 53(3):129–181

    Article  Google Scholar 

  18. Colliat-Dangus JL, Desrues J, Foray P (1988) Triaxial testing of granular soil under elevated cell pressure. In: Donaghe R T, Chaney R C, Silver M L (eds) Advanced triaxial testing of soil and rock ASTM STP 977. American Society for Testing and Materials, Philadelphia, pp 290–310

  19. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546

    Article  Google Scholar 

  20. Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li2090. Acta Materialia 45:1977–1987

    Article  Google Scholar 

  21. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226

    Article  Google Scholar 

  22. Elliot JA, Windele AH, Hobdell J R, Eeckhaut G, Olman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J (2002) In situ deformation of an open-cell flexible polyurethane foam characterized by 3D computed microtomography. J Mater Sci 37:1547–1555

    Article  Google Scholar 

  23. Buffière JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305

    Article  Google Scholar 

  24. Smith TS, Bay BK, Rashid M (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42:272–278

    Article  Google Scholar 

  25. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer

  26. Bornert M, Chaix JM, Doumalin P, Dupré JC, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimentionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88

    Google Scholar 

  27. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320

    Article  Google Scholar 

  28. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438

    Article  Google Scholar 

  29. Germaneau A, Doumalin P, Dupré JC (2007) Full 3D measurement of strain field by scattered light for analysis of structures. Exp Mech 47(4):523–532

    Article  Google Scholar 

  30. Hall S, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani C, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray micro CT and volumetric digital image correlation. Géotechnique 60(5):315–322

    Article  Google Scholar 

  31. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39:1253–1265

    Article  Google Scholar 

  32. Hild F, Maire E, Roux S, Witz JF (2009) Three dimensional analysis of a compression test on stone wool. Acta Materialia 7:3310–3320

    Article  Google Scholar 

  33. Limodin N, Réthoré J, Buffière J-Y, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Materialia 57:4090–4101

    Article  Google Scholar 

  34. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg MC, Buffière JY, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199, 21–22:1307–1325

    Article  MATH  Google Scholar 

  35. Leclerc H, Périé JN, Hild F, Roux S (2012) Digital Volume Correlation: What are the limits to the spatial resolution? Mech Indust 13:361–371

    Article  Google Scholar 

  36. Taillandier-Thomas T, Roux S, Morgeneyer TF, Hild F (2014) Localised strain field measurement on laminography data with mechanical regularization. Nucl Instrum Methods Phys Res Sec B 324:70–79

    Article  Google Scholar 

  37. Hild F, Fanget A, Adrien J, Maire E, Roux S (2011) Three dimensional analysis of a tensile test on a propellant with digital volume correlation. Arch Mech 63(5-6):1–20

    Google Scholar 

  38. Limodin N, Réthoré J, Adrien J, Buffière JY, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959–970

    Article  Google Scholar 

  39. Bouterf A, Roux S, Hild F, Adrien J, Maire E, Meille S (2014) Digital volume correlation applied to X-ray tomography images from spherical indentation tests on lightweight gypsum. Strain 50(5):444–453

    Article  Google Scholar 

Download references


The authors wish to thank Saint-Gobain Recherche for supporting this research project, and particularly René Gy for insightful discussions. AB is also financially supported by ANRT through contract no. 2010/567. The authors would also like to thank Dr. S. Meille for helpful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Bouterf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouterf, A., Adrien, J., Maire, E. et al. Failure Mechanisms of Plasterboard in Nail Pull Test Determined by X-ray Microtomography and Digital Volume Correlation. Exp Mech 56, 1427–1437 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Digital volume correlation
  • Lightweight plasterboard
  • Nail pull test
  • X-ray tomography