Skip to main content
Log in

Evolution of the Piezomagnetic Field of Ferromagnetic Steels Subjected to Cyclic Tensile Stress with Variable Amplitudes

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this research, the evolutions of the piezomagnetic fields of ferromagnetic steels under cyclic tensile stress with variable amplitudes were investigated. The piezomagnetic signals of initially undemagnetized Q345 and U75V steel samples were measured by an APS 428D fluxgate magnetometer. It was found that the magnetic field reversal points vary perceptibly in the initial cycles, and then relax to a more gradual rate of change. The drastic variations of the magnetic field reversals may be utilized to characterize the early stages of plastic deformation. The discontinuous piezomagnetic behaviors occurred during the loading process reveal that the piezomagnetic field is highly sensitive to stress and microstructural changes. The total magnetic fields and the irreversible magnetic fields show apparently different variation characteristics in the elastic and plastic stages. Based on the theory of the interaction between dislocation and domain wall, as well as the related models of the magneto-mechanical effect, the experimental results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Villari E (1865) Change of magnetization by tension and by electric current. Ann Phys Chem 126:87–122

    Article  Google Scholar 

  2. Craik D, Wood M (1970) Magnetization changes induced by stress in a constant applied field. J Phys D Appl Phys 3(7), 1009

    Article  Google Scholar 

  3. Bozorth RM (1951) Ferromagnetism. Van Nostrand, Princeton

    Google Scholar 

  4. Bozorth RM, Williams HJ (1945) Effect of small stresses on magnetic properties. Rev Mod Phys 17(1):72–80

    Article  Google Scholar 

  5. Jiles D, Atherton DL (1984) Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect. J Phys D Appl Phys 17(6), 1265

    Article  Google Scholar 

  6. Atherton DL, Ton V (1990) The effects of stress on a ferromagnet on a minor hysteresis loop. IEEE Tran Magn 26(3):1153–1156

    Article  Google Scholar 

  7. Robertson I (1993) Direction of change of magnetization of a ferromagnet subjected to stress. IEEE Tran Magn 29(3):2077–2080

    Article  Google Scholar 

  8. Guo X, Artherton DL (1995) Magnetization changes in 2% Mn pipeline steel induced by uniaxial tensile stress cycles of increasing amplitude. IEEE Tran Magn 31(5):2510–2521

    Article  Google Scholar 

  9. Jiles D, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61(1):48–60

    Article  Google Scholar 

  10. Jiles D (1995) Theory of the magnetomechanical effect. J Phys D Appl Phys 28(8), 1537

    Article  Google Scholar 

  11. Makar J, Tanner B (2000) The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J Magn Magn Mater 222(3):291–304

    Article  Google Scholar 

  12. Mao W, Atherton DL (2000) Effect of compressive stress on the reversible and irreversible differential magnetic susceptibility of a steel cube. J Magn Magn Mater 214(1):69–77

    Article  Google Scholar 

  13. Gao Z, Chen Z, Jiles D, Biner S (1994) Variation of coercivity of ferromagnetic material during cyclic stressing. IEEE Tran Magn 30(6):4593–4595

    Article  Google Scholar 

  14. Erber T, Guralnick S, Desai R, Kwok W (1997) Piezomagnetism and fatigue. J Phys D Appl Phys 30(20), 2818

    Article  Google Scholar 

  15. Guralnick S, Bao S, Erber T (2008) Piezomagnetism and fatigue: II. J Phys D Appl Phys 41(11), 115006

    Article  Google Scholar 

  16. Bao S, Erber T, Guralnick S, Jin W (2011) Fatigue, magnetic and mechanical hysteresis. Strain 47(4):372–381

    Article  Google Scholar 

  17. Smaga M, Walther F, Eifler D (2008) Deformation-induced martensitic transformation in metastable austenitic steels. Mater Sci Eng A 483:394–397

    Article  Google Scholar 

  18. Schneider CS (2005) Effect of stress on the shape of ferromagnetic hysteresis loops. J Appl Phys 97(10), 10E503

    Article  Google Scholar 

  19. Devine M, Jiles D (1996) Composition dependence of the magnetomechanical effect and magnetostriction. IEEE Tran Magn 32(5):4740–4742

    Article  Google Scholar 

  20. Leng J, Xu M, Zhou G, Wu Z (2012) Effect of initial remanent states on the variation of magnetic memory signals. NDT & E 52:23–27

    Article  Google Scholar 

  21. Kuruzar ME, Cullity BD (1971) The magnetostriction of iron under tensile and compressive tests. Inter J Magnetism 1:323–325

    Google Scholar 

  22. Leng J, Liu Y, Zhou G, Gao Y (2013) Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT & E 55:42–46

    Article  Google Scholar 

  23. Hall E0 (2012) Yield point phenomena in metals and alloys. Springer Science & Business Media

  24. Bao S, Xu F, Wang J, Lou H (2013) Magnetomechanical measurements for nondestructive evaluation of failure in steel structural element. J Mater Eng Perform 22(5):1351–1354

    Article  Google Scholar 

  25. Li J, Xu M (2012) Influence of uniaxial plastic deformation on surface magnetic field in steel. Meccanica 47(1):135–139

    Article  MATH  Google Scholar 

  26. Roskosz M, Gawrilenko P (2008) Analysis of changes in residual magnetic field in loaded notched samples. NDT & E International 41(7):570–576

    Article  Google Scholar 

  27. Dong L, Xu B, Dong S, Song L, Chen Q, Wang D (2009) Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT & E International 42(4):323–327

    Article  Google Scholar 

  28. Dhar A, Clapham L, Atherton D (2001) Influence of uniaxial plastic deformation on magnetic Barkhausen noise in steel. NDT & E 34(8):507–514

    Article  Google Scholar 

  29. Taylor RA, Jakubovics JP, Astié B, Degauque J (1983) Direct observation of the interaction between magnetic domain walls and dislocations in iron. J Magn Magn Mater 31:970–972

    Article  Google Scholar 

  30. Sablik MJ (2001) Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels. J Appl Phys 89(10), 5610

    Article  Google Scholar 

  31. Sablik MJ, Rios S, Landgraf FJG, Yonamine T, de Campos MF (2005) Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation. J Appl Phys 97(10), 10E518

    Article  Google Scholar 

  32. Li J, Xu M, Leng J, Xu M (2012) Modeling plastic deformation effect on magnetization in ferromagnetic materials. J Appl Phys 111(6), 063909

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LZ12E08003), Public Welfare Technology Research Projects of Zhejiang Province (2013C31013), Fundamental Research Funds for the Central Universities (2015QNA4028) and Interdisciplinary Research Fund for Young Scholars in Zhejiang University (JCZZ-2013018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Fu, M., Gu, Y. et al. Evolution of the Piezomagnetic Field of Ferromagnetic Steels Subjected to Cyclic Tensile Stress with Variable Amplitudes. Exp Mech 56, 1017–1028 (2016). https://doi.org/10.1007/s11340-016-0147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0147-0

Keywords

Navigation