Skip to main content
Log in

Optimum Image Extraction and Phase Analysis for ESPI Measurements Under Environmental Disturbance

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We propose a new technique for electronic speckle pattern interferometry (ESPI) for measuring static deformation under environmental disturbances. In this technique, a number of laser speckle images of the initial and deformed states are captured, and images appropriate for making interference fringes are extracted using the optimum image extraction method. The phase of the interference fringe pattern is evaluated from the extracted images using a random phase-stepping method. In this study, translation amounts by random vibration are used as the phase stepping amounts. To validate the effectiveness of the proposed technique, an in-plane rotation of a flat plate and a strain distribution around a weld line of a compressor tank are measured. A compact speckle interferometer constructed on a tripod is used for the measurement. As a result, an interference fringe can be obtained, and the subsequent phase analysis can be performed under the proposed method without a vibration isolator. It is expected that ESPI measurements under environmental disturbance will be possible using the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jones R, Wykes C (1983) Holographic and speckle interferometry. Cambridge University Press, Cambridge

    Google Scholar 

  2. Chiang FP (1989) Speckle metrology, ASM handbook volume 17, Nondestructive Evaluation and Quality Control 432-437, ASM International

  3. Sirohi RS (2002) Speckle interferometry. Contemp Phys 43(3):161–180

    Article  Google Scholar 

  4. Vial-Edwards C, Lira I, Martinez A, Münzenmayer M (2001) Electronic speckle pattern interferometry analysis of tensile test of semihard copper sheets. Exp Mech 41(1):58–62

    Article  Google Scholar 

  5. Hinsch KD, Gülker G, Kelmers H (2007) Checkup for aging artwork—optical tools to monitor mechanical behavior. Opt Lasers Eng 45:578–588

    Article  Google Scholar 

  6. Arikawa S, Yoneyama S (2011) A simple method for detecting a plastic deformation region formed by local loading using electronic speckle pattern interferometry (in Japanese). Trans Jap Soc Mech Eng, Ser A 77(775):383–390

    Article  Google Scholar 

  7. Madjarova V, Kadono H, Toyooka S (2003) Dynamic Electronic Speckle Pattern Interferometry (DESPI) phase analyses with temporal Hilbert transform. Opt Express 11:617–623

    Article  Google Scholar 

  8. Ikeda T, Ichinose K, Gomi K, Yoshida S (2007) Study of dynamic fracture toughness measuring method by electronic spackle pattern interferometry (in Japanese). Proc Mech Eng Congress 2011, Jap Soc Mech Eng 7-1:57–58

    Google Scholar 

  9. Arikawa S, Gaffney JA, Gomi K, Ichinose K, Ikeda T, Mita T, Rourks RL, Schneider C, Yoshida S (2007) Application of electronic speckle pattern interferometry to high-speed phenomena. J Mater Test Res Assoc Jap 52(3):176–184

    Google Scholar 

  10. Ma C, Huang C (1998) Vibration characteristics for piezoelectric cylinders using amplitude- fluctuation electronic speckle pattern interferometry. AIAA J 36(12):2262–2268

    Article  Google Scholar 

  11. Chen C, Huang C, Chen Y (2009) Vibration analysis and measurement for Piezoceramic rectangular plates in resonance. J Sound Vib 326:251–262

    Article  Google Scholar 

  12. Huang Y, Ma C (2009) Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered Piezoceramic bimorphs. IEEE Trans Ultrason Ferroelectr Freq Control 56(12):2598–2611

    Article  MathSciNet  Google Scholar 

  13. Silva Gomes JF, Monteiro JM, Vaz MAP (2000) NDI of interface in coating systems using digital interferometry. Mech Mater 32:837–843

    Article  Google Scholar 

  14. Gryzagoridis J, Findeis D, Tait RB (2005) Residual stress determination and defect detection using electronic speckle pattern interferometry. Insight - Non-Destruct Test Condition Monitor 47(2):91–94

    Article  Google Scholar 

  15. Ambu R, Aymerich F, Ginesu F, Priolo O (2006) Assessment of NDT interferometric techniques for impact damage detection in composite laminates. Compos Sci Technol 66:199–205

    Article  Google Scholar 

  16. Parra-Michel J, Martínez A, Anguiano-Morales A, Rayas JA (2010) Measuring object shape by using in-plane electronic speckle pattern interferometry with divergent illumination. Meas Sci Technol 21:1–8

    Article  Google Scholar 

  17. Genovese K, Lamberti L, Pappalettere C (2004) A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components. Opt Lasers Eng 42:543–562

    Article  Google Scholar 

  18. Arikawa S, Tominaga Y, Yoneyama S (2011) Speckle interferometry-digital image correlation hybrid method for wide range strain measurement (in Japanese). J Jap Soc Experiment Mech 12(3):235–242

    Google Scholar 

  19. Bruck HY, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29(3):261–268

    Article  Google Scholar 

  20. Yoneyama S (2010) Displacement and strain measurement using digital image correlation (in Japanese). J Jap Soc Non-Destruct Inspect 59(7):306–310

    Google Scholar 

  21. Yoneyama S, Sakaue K, Kikuta H, Takashi M (2006) Instantaneous phase-stepping photoelasticity for the study of crack growth behavior in a quenched thin glass plate. Meas Sci Technol 17:3309–3316

    Article  Google Scholar 

  22. Yoneyama S, Kamihoriuchi H (2009) A method for evaluating full-field stress components from a single image in interferometric photoelasticity. Measure Sci Technol 20. doi:10.1088/0957-0233/20/7/075302, (8pp)

  23. Tahara T, Ito K, Kakue T, Fujii M, Shimozato Y, Awatsuji Y, Nishio K, Ura S, Kubota T, Matoba O (2010) Parallel phase-shifting digital holographic microscopy. Biomed Optics Express 1(2):610–616

    Article  Google Scholar 

  24. Yoneyama S, Arikawa S (2014) Micro-polarizer array based instantaneous phase-stepping interferometry for observing dynamic phenomena. Conf Proc Soc Experiment Mech Ser 2014 3:229–233, Springer

    Article  Google Scholar 

  25. Yoshida S, Suprapedi, Widiastuti R, Triastuti ET, Kusnowo A (1995) Phase evaluation for electronic speckle-pattern interferometry deformation analyses. Opt Lett 20:755–757

    Article  Google Scholar 

  26. Madjarova V, Toyooka S, Widiastuti R, Kadono H (2002) Dynamic ESPI with subtraction-addition method for obtaining the phase. Opt Commun 212:35–43

    Article  Google Scholar 

  27. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160

    Article  Google Scholar 

  28. Ma J, Wang Z, Vo M, Luu L (2011) Parameter discretization in Two-dimensional continuous wavelet transform for fast fringe pattern analysis. Appl Opt 50(34):6399–6408

    Article  Google Scholar 

  29. Yoneyama S, Arikawa S, Kugiyama Y (2012) Interference and photoelastic fringe pattern analysis using snapshot imaging polarimetry. J Jap Soc Experiment Mech 12(Special Issue):s157–s162

    Google Scholar 

  30. Servin M, Davila A, Quiroga SA (2002) Extended-range temporal electronic speckle pattern interferometry. Appl Opt 41(22):4541–4547

    Article  Google Scholar 

  31. Equis S, Jacquot P (2008) Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform. Strain. doi:10.1111/j.1475-1305.2008.00451.x (9pp)

    Google Scholar 

  32. Bruno L, Poggialini A (2008) Phase shifting speckle interferometry for dynamic phenomena. Opt Express 16(7):4665–4670

    Article  Google Scholar 

  33. Arikawa S, Nakaya Y, Yoneyama S (2012) Electronic speckle pattern interferometry with optimum image extraction for deformation measurement under environmental disturbance. J Solid Mech Mater Eng 6(6):634–644

    Article  Google Scholar 

  34. Wang Z, Han B (2004) Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt Lett 29(14):1671–1673

    Article  Google Scholar 

  35. Huntley JM (1998) Automated fringe pattern analysis in experimental mechanics: a review. J Strain Anal Eng Des 33(2):105–125

    Article  Google Scholar 

  36. Kao CC, Yeh GB, Lee SS, Lee CK, Yang CS, Wu KC (2002) Phase-shifting algorithms for electronic speckle pattern interferometry. Appl Opt 41(1):46–54

    Article  Google Scholar 

  37. Huang MJ, Yun B (2007) Self-marking phase-stepping Electronic Speckle Pattern Interferometry (ESPI) for determining a phase map with least residues. Opt Laser Technol 39:136–148

    Article  Google Scholar 

  38. Moore AJ, Tyrer JR (1996) Two-dimensional strain measurement with ESPI. Opt Lasers Eng 24:381–402

    Article  Google Scholar 

  39. Bingleman LW, Schajer GS (2011) DIC-based surface motion correction for ESPI measurements. Exp Mech 68:1207–1216

    Article  Google Scholar 

  40. Arikawa S, Yoneyama S (2011) Correcting the effect of rigid body displacement in speckle interferometry (in Japanese). J Jap Soc Experiment Mech 11(3):195–200

    Google Scholar 

  41. Arikawa S, Yoneyama S (2013) Pattern position correction for measuring large deformation in speckle interferometry. J Solid Mech Mater Eng 7(3):417–425

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B), Grant Number 25870699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arikawa, S., Ashizawa, K., Koga, K. et al. Optimum Image Extraction and Phase Analysis for ESPI Measurements Under Environmental Disturbance. Exp Mech 56, 987–997 (2016). https://doi.org/10.1007/s11340-016-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0142-5

Keywords

Navigation