Skip to main content

Using Image Gradients to Improve Robustness of Digital Image Correlation to Non-uniform Illumination: Effects of Weighting and Normalization Choices


Changes in the light condition affect the solution of intensity-based digital image correlation algorithms. One natural way to decrease the influence of illumination is to consider the gradients of the image rather than the image itself when building the objective function. In this work, a weighted normalized gradient-based algorithm, is proposed. This algorithm optimizes the sum-of-squared difference between the weighted normalized gradients of the reference and deformed images. Due to the lower sensitivity of the gradient to the illumination variation, this algorithm is more robust and accurate than the intensity-based algorithm in case of illumination variations. Yet, it comes with a higher sensitivity to noise that can be mitigated by designing the relevant weighting and normalization of the image gradient. Numerical results demonstrate that the proposed algorithm gives better results in case of linear/non-linear space-based and non-linear gray value-based illumination variation. The proposed algorithm still performs better than the intensity-based algorithm in case of illumination variations and noisy data provided the images are pre-smoothed with a Gaussian low-pass filter in numerical and experimental examples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):427–431

    Article  Google Scholar 

  2. Sutton MA, Walters WJ, Peters WH, Ranson WF, Mcneil SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  3. Chu T, Ranson W, MA S (1985) Applications of digital image correlation techniques to experimental mechanics. Exp Mech 25(3):232–244

    Article  Google Scholar 

  4. Bruck H, McNeill S, Sutton M, Peters W (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29(3):261–267

    Article  Google Scholar 

  5. Sutton M, Orteu J, Schreier H (2009) Image Correlation for Shape, Motion and Deformation Measurements. Springer

  6. Pan B, Xie H, Guo Z, Hua T (2007) Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Opt Eng 46(10):033601

    Article  Google Scholar 

  7. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47(0):865–874

    Article  Google Scholar 

  8. Pan B (2011) Recent Progress in Digital Image Correlation. Exp Mech 51(7):1223–1235

    Article  Google Scholar 

  9. Pan B, Qian K, HMX, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001

    Article  Google Scholar 

  10. Baker S, Matthews I (2001) Equivalence and efficiency of image alignment algorithms. In: Proceedings of the 2001 IEEE conference on computer vision and pattern recognition, vol.56, 1090–1097

  11. Baker S, Matthews I (2004) Lucas-Kanada 20 years on: a unifying framework. Int J Comput Vis 56:221–225

    Article  Google Scholar 

  12. Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computations. Exp Mech 53(7):1277–1289

    Article  Google Scholar 

  13. Tong W (2013) Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: a review. Strain 49(4):313–334

    Article  Google Scholar 

  14. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41(4):167–175

    Article  Google Scholar 

  15. Lubineau G (2009) A goal-oriented filtering technique of field measurements for parameters identification of material model. Comput Mech 44(5):591–603

    Article  MATH  Google Scholar 

  16. Moussawi A, Lubineau G, Florentin E, Blaysat B (2013) The constitutive compatibility method for identification of material parameters based on full-field measurements. Comput Meth Appl Mech Eng 265:1–14

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu X, Tan Q, Xiong L, Liu G, Liu J, Yang X, Wang C (2012) Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation. Opt Laser Technol 44(4):1060–1067

    Article  Google Scholar 

  18. Roberts L (1963) Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of Technology

  19. Sobel I, Feldman G (1968) A 3 x 3 isotropic gradient operator for image processing. In: Stanford artificial intelligence project

  20. Prewitt J (1970) Object enhancement and extraction. Academic Press, New York

    Google Scholar 

  21. Tzimiropoulos G, Zafeiriou S, Pantic M (2011) Robust and Efficient Parametric Face Alignment. In: IEEE international conference on computer vision, ICCV 2011, 1847–1854, IEEE Computer Society, USA

  22. Pan B (2013) Bias error reduction of digital image correlation using Gaussian pre-filtering. Opt Lasers Eng 51(10):1161–1167

    Article  Google Scholar 

  23. Pan B, Li K (2011) A fast digital image correlation for deformation measurement. Opt Lasers Eng 49(0):841–847

    Article  Google Scholar 

  24. Yang CHT, Lai SH, Chang LW (2004) Robust face image matching under illumination variations. EURASIP J Appl Signal Process 2004:2533–2543

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang CHT, Lai SH, Chang LW (2007) Hybrid image matching combining Hausdorff distance with normalized gradient matching. Pattern Recog 40(4):1173–1181

    Article  MATH  Google Scholar 

  26. Zhu G, Zhang S, Chen X, Wang C (2007) Efficient Illumination Insensitive Object Tracking by Normalized Gradient Matching. IEEE Signal Process Lett 14(12):944–947

    Article  Google Scholar 

  27. Pan B, Xie H, Xu B, Dai F (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 17(6):1615–1621

    Article  Google Scholar 

  28. Blaber J, Antoniou A (2013) Open source 2D-DIC MATLAB software.

Download references


Funding for this research was provided by KAUST baseline funding. The authors are grateful to KAUST for its financial support. We are also grateful to Justin Blaber of the Georgia Institute of Technology for providing open source codes [28].

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. Lubineau.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Moussawi, A., Gras, R. et al. Using Image Gradients to Improve Robustness of Digital Image Correlation to Non-uniform Illumination: Effects of Weighting and Normalization Choices. Exp Mech 55, 963–979 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: