Advertisement

Experimental Mechanics

, Volume 56, Issue 2, pp 197–216 | Cite as

Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation

  • J.C. Stinville
  • M.P. EchlinEmail author
  • D. Texier
  • F. Bridier
  • P. Bocher
  • T.M. Pollock
Article

Abstract

Damage during loading of polycrystalline metallic alloys is localized at or below the scale of individual grains. Quantitative assessment of the heterogeneous strain fields at the grain scale is necessary to understand the relationship between microstructure and elastic and plastic deformation. In the present study, digital image correlation (DIC) is used to measure the strains at the sub-grain level in a polycrystalline nickel-base superalloy where plasticity is localized into physical slip bands. Parameters to minimize noise given a set speckle pattern (introduced by chemical etching) when performing DIC in a scanning electron microscope (SEM) were adapted for measurements in both plastic and elastic regimes. A methodology for the optimization of the SEM and DIC parameters necessary for the minimization of the variability in strain measurements at high spatial resolutions is presented. The implications for detecting the early stages of damage development are discussed.

Keywords

High resolution digital image correlation DIC Scanning electron microscopy SEM Slip bands Polycrystalline materials René 88DT Strain localization 

Notes

Acknowledgments

The authors gratefully acknowledge the support of GE Global Research and appreciate useful discussions with J. Laflen, A. Loghin, S. Daly, and W. LePage. Remco Guerts (FEI) is also acknowledged for his iFAST contributions and support. The Air Force Center of Excellence (Grant # FA9550-12-1-0445) is also acknowledged for their support. Nicolas Vanderesse is also acknowledged for the development of the OpenDIC software.

References

  1. 1.
    Miao J, Pollock TM, Jones JW (2009) Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater 57(20):5964–5974. doi: 10.1016/j.actamat.2009.08.022. http://www.sciencedirect.com/science/article/pii/S1359645409005357 CrossRefGoogle Scholar
  2. 2.
    Miao J, Pollock TM, Jones JW (2012) Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater 60(6–7):2840–2854. doi: 10.1016/j.actamat.2012.01.049. http://www.sciencedirect.com/science/article/pii/S1359645412000870 CrossRefGoogle Scholar
  3. 3.
    Cerrone A, Spear A, Tucker J, Stein C, Rollett A, Ingraffea A (2013). In: Materials Science and Technology (MS&T) ConferenceGoogle Scholar
  4. 4.
    Stein CA, Cerrone A, Ozturk T, Lee S, Kenesei P, Tucker H, Pokharel R, Lind J, Hefferan C, Suter RM, Ingraffea AR, Rollett AD (2014) Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy. Curr Opinion Solid State Mater Sci 18(4):244–252. doi: 10.1016/j.cossms.2014.06.001. http://www.sciencedirect.com/science/article/pii/S1359028614000370. Slip Localization and Transfer in Deformation and Fatigue of PolycrystalsCrossRefGoogle Scholar
  5. 5.
    Zhang M, Bridier F, Villechaise P, Mendez J, McDowell D (2010) Simulation of slip band evolution in duplex Ti–6Al–4V. Acta Mater 58(3):1087–1096. doi:  10.1016/j.actamat.2009.10.025. http://www.sciencedirect.com/science/article/pii/S1359645409007198 CrossRefGoogle Scholar
  6. 6.
    Zhao Z, Ramesh M, Raabe D, Cuitiño A, Radovitzky R (2008) Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int J Plast 24(12):2278–2297. doi: 10.1016/j.ijplas.2008.01.002. http://www.sciencedirect.com/science/article/pii/S074964190800020X CrossRefzbMATHGoogle Scholar
  7. 7.
    Merzouki T, Collard C, Bourgeois N, Zineb TB, Meraghni F (2010) Coupling between measured kinematic fields and multicrystal {SMA} finite element calculations. Mech Mater 42(1):72–95. doi: 10.1016/j.mechmat.2009.09.003. http://www.sciencedirect.com/science/article/pii/S0167663609001562 CrossRefGoogle Scholar
  8. 8.
    Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539. doi: 10.1016/j.ijplas.2007.01.009. http://www.sciencedirect.com/science/article/pii/S074964190700006X CrossRefzbMATHGoogle Scholar
  9. 9.
    Walley J, Wheeler R, Uchic M, Mills M (2012) In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech 52(4):405–416. doi: 10.1007/s11340-011-9499-7 CrossRefGoogle Scholar
  10. 10.
    Carroll JD, Abuzaid W, Lambros J, Sehitoglu H (2013) High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int J Fatigue 57:140–150. doi: 10.1016/j.ijfatigue.2012.06.010. http://www.sciencedirect.com/science/article/pii/S0142112312002113. Fatigue and Microstructure: A special issue on recent advancesCrossRefGoogle Scholar
  11. 11.
    Carroll J, Clark B, Buchheit T, Boyce B, Weinberger C (2013) An experimental statistical analysis of stress projection factors in {BCC} tantalum. Mater Sci Eng A 581:108–118. doi: 10.1016/j.msea.2013.05.085. http://www.sciencedirect.com/science/article/pii/S0921509313006515 CrossRefGoogle Scholar
  12. 12.
    Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49(17):3433–3441. doi: 10.1016/S1359-6454(01)00242-7. http://www.sciencedirect.com/science/article/pii/S1359645401002427 CrossRefGoogle Scholar
  13. 13.
    Delaire F, Raphanel J, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta Mater 48(5):1075–1087. doi: 10.1016/S1359-6454(99)00408-5. http://www.sciencedirect.com/science/article/pii/S1359645499004085 CrossRefGoogle Scholar
  14. 14.
    Jin H, Lu WY, Haldar S, Bruck H (2011) Microscale characterization of granular deformation near a crack tip. J Mater Sci 46(20):6596–6602. doi: 10.1007/s10853-011-5608-3 CrossRefGoogle Scholar
  15. 15.
    Kammers A, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53(9):1743–1761. doi: 10.1007/s11340-013-9782-x CrossRefGoogle Scholar
  16. 16.
    Di Gioacchino F, Quinta da Fonseca J (2013) Plastic strain mapping with sub-micron resolution using digital image correlation. Exp Mech 53(5):743–754. doi: 10.1007/s11340-012-9685-2 CrossRefGoogle Scholar
  17. 17.
    Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc FeCr polycrystal. Mater Sci Eng A 588:308–317. doi: 10.1016/j.msea.2013.08.050. http://www.sciencedirect.com/science/article/pii/S0921509313009374 CrossRefGoogle Scholar
  18. 18.
    Kammers A, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53(8):1333–1341. doi: 10.1007/s11340-013-9734-5 CrossRefGoogle Scholar
  19. 19.
    Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60(6):1201–1220. doi: 10.1016/j.jmps.2012.02.001. http://www.sciencedirect.com/science/article/pii/S0022509612000324 CrossRefGoogle Scholar
  20. 20.
    Tatschl A, Kolednik O (2003) A new tool for the experimental characterization of micro-plasticity. Mater Sci Eng A 339(1–2):265–280. doi: 10.1016/S0921-5093(02)00111-9. http://www.sciencedirect.com/science/article/pii/S0921509302001119 CrossRefGoogle Scholar
  21. 21.
    Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47 (6):775–787. doi: 10.1007/s11340-007-9042-z CrossRefGoogle Scholar
  22. 22.
    Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X, Reynolds AP (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804. doi: 10.1007/s11340-007-9041-0 CrossRefGoogle Scholar
  23. 23.
    Krueger D, Kissinger R, Menzies R (1992) Superalloys. In: Antolovich SD (ed). TMS-AIME, Warrendale, pp 277–286Google Scholar
  24. 24.
    Miao J, Pollock T, Jones J. (TMS, Warrendale, PA, 2008), pp. 589–597Google Scholar
  25. 25.
    Reed R (2006) The superalloys: fundamentals and applications. Cambridge University Press. http://books.google.com/books?id=SIUGcd4a-EkC
  26. 26.
    Sutton MA (2008) Springer handbook of experimental solid mechanics. In: Sharpe J, William N (eds). doi: 10.1007/978-0-387-30877-7_20. Springer, US, pp 565–600
  27. 27.
    Bridier F, Stinville JC, Vanderesse N, Villechaise P, Bocher P (2014) Microscopic strain and crystal rotation measurement within metallurgical grains. Key Eng Mater 592:493–496Google Scholar
  28. 28.
    Vic-2D (2009) [software] (Correlated Solutions Inc., Columbia, SC)Google Scholar
  29. 29.
    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001. http://stacks.iop.org/0957-0233/20/i=6/a=062001 CrossRefGoogle Scholar
  30. 30.
    Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts,theory and applications. Springer. https://books.google.com/books?id=AlkqMxpQMLsC
  31. 31.
    Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150. doi: 10.1016/0262-8856(86)90057-0. http://www.sciencedirect.com/science/article/pii/0262885686900570 CrossRefGoogle Scholar
  32. 32.
    Vendroux G, Knauss WG (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38(2):86–92. doi: 10.1007/BF02321649 CrossRefGoogle Scholar
  33. 33.
    Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scales. Mech Mater 35(3–6):217–231. doi: 10.1016/S0167-6636(02)00271-5. http://www.sciencedirect.com/science/article/pii/S0167663602002715 CrossRefGoogle Scholar
  34. 34.
    Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17(10):2613. http://stacks.iop.org/0957-0233/17/i=10/a=012 CrossRefGoogle Scholar
  35. 35.
    Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Instrum 81(8):083703. doi: 10.1063/1.3474902. http://scitation.aip.org/content/aip/journal/rsi/81/8/10.1063/1.3474902 CrossRefGoogle Scholar
  36. 36.
    Darrell T, Wohn K (1988). In: Proceedings CVPR ’88, Computer Society Conference on Computer Vision and Pattern Recognition, 1988. doi: 10.1109/CVPR.1988.196282, pp 504–509
  37. 37.
    Carter JL, Uchic MD, Mills MJ (2015) Impact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments. Springer International Publishing, pp 119– 126Google Scholar
  38. 38.
    Villechaise P, Cormier J, Billot T, Mendez J (2012). In: 12th International Symposium on Superalloys, pp 15–24Google Scholar
  39. 39.
    Stinville JC, Lenthe WC, Miao J, Pollock TM (2015) A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater (under review)Google Scholar
  40. 40.
    Stinville JC, Bridier F, Bocher P, Pollock TM (2015) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42. doi: 10.1016/j.actamat.2015.07.016. http://www.sciencedirect.com/science/article/pii/S1359645415004784
  41. 41.
    Heinz A, Neumann P (1990) Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall Mater 38(10):1933–1940. doi: 10.1016/0956-7151(90)90305-Z. http://www.sciencedirect.com/science/article/pii/095671519090305Z
  42. 42.
    Echlin MP, Lenthe WC, Pollock TM (2014) Three-dimensional sampling of material structure for property modeling and design. Integrating Materials and Manufacturing Innovation 3(1):21. doi: 10.1186/s40192-014-0021-9 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  • J.C. Stinville
    • 1
  • M.P. Echlin
    • 1
    Email author
  • D. Texier
    • 2
  • F. Bridier
    • 2
  • P. Bocher
    • 2
  • T.M. Pollock
    • 1
  1. 1.University of California Santa BarbaraSanta BarbaraUSA
  2. 2.Ecole de Technologie SuperieureMontrealCanada

Personalised recommendations