Experimental Mechanics

, Volume 56, Issue 2, pp 177–195 | Cite as

In situ 3D Synchrotron Laminography Assessment of Edge Fracture in Dual-Phase Steels: Quantitative and Numerical Analysis

  • M. KahzizEmail author
  • T. F. Morgeneyer
  • M. Mazière
  • L. Helfen
  • O. Bouaziz
  • E. Maire


The mechanical performance of automotive structures made of advanced high strength steels (AHSS) is often seen reduced by the presence of cut edges. An attempt is made to assess and quantify the initial damage state and the damage evolution during mechanical testing of a punched edge and a machined edge via a recently developed 3D imaging technique called synchrotron radiation computed laminography. This technique allows us to observe damage in regions of interest in thin sheet-like objects at micrometer resolution. In terms of new experimental mechanics, steel sheets having sizes and mechanical boundary conditions of engineering relevance can be tested for the first time with in situ 3D damage observation and quantification. It is found for the investigated DP600 steel that the fracture zone of the punched edge is rough and that needle-shape voids at the surface and in the bulk follow ferrite-martensite flow lines. During mechanical in situ testing the needle voids grow from the fracture zone surface and coalesce with the sheared zone. In contrast, during in situ mechanical testing of a machined edge the damage starts away from the edge (∼800μ m) where substantial necking has occurred. Three-dimensional image analysis was performed to quantify the initial damage and its evolution. These data can be used as input and validation data for micromechanical damage models. To interpret the experimental findings in terms of mechanical fields, combined surface digital image correlation and 3D finite element analysis were carried out using an elasto-plastic constitutive law of the investigated DP steel. The stress triaxiality and the accumulated plastic strain were calculated in order to understand the influence of the edge profile and the hardening of the cutting-affected zone on the mechanical fields.


DP steels Ductile damage Edge fracture Synchrotron laminography and FE analysis 



The authors would like to thank ArcelorMittal Global R&D for financial support and material supply and Astrid Perlade for helpful discussions. The authors also acknowledge the ESRF for the provision of synchrotron radiation at ID19 beam-line through the MA1631 project.


  1. 1.
    Dalloz A, Besson J, Gourgues-Lorenzon A-F, Sturel T, Pineau A (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76(10):1411–1424CrossRefGoogle Scholar
  2. 2.
    Thomas DJ (2012) Effect of mechanical cut-edges on the fatigue and formability performance of advanced high-strength steels. J Fail Anal Preven 12(5):518–531CrossRefGoogle Scholar
  3. 3.
    Lara A, Picas I, Casellas D (2013) Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J Mater Proc Technol 213:1908–1919CrossRefGoogle Scholar
  4. 4.
    Mazinani M, Poole WJ (2007) Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mat Trans A 38(2):328–339CrossRefGoogle Scholar
  5. 5.
    Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by x-ray microtomography. Acta Mater 56(18):4954–4964CrossRefGoogle Scholar
  6. 6.
    Landron C, Bouaziz O, Maire E, Adrien J (2010) Characterization and modeling of void nucleation by interface decohesion in dual phase steels. Scr Mater 63(10):973–976CrossRefGoogle Scholar
  7. 7.
    Avramovic-Cingara G, Saleh ChAR, Jain MK, Wilkinson DS (2009) Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans 40(13):3117–3127CrossRefGoogle Scholar
  8. 8.
    Kadkhodapour J, Butz A, Ziaei Rad S (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59(7):2575–2588CrossRefGoogle Scholar
  9. 9.
    Azuma M, Goutianos S, Hansen N, Winther G, Huang X (2012) Effect of hardness of martensite and ferrite on void formation in dual phase steel. Mater Sci Technol 28(9–10):1092–1100CrossRefGoogle Scholar
  10. 10.
    Ramazani A, Schwedt A, Aretz A, Prahl U, Bleck W (2013) Characterization and modelling of failure initiation in dpsteel. Comput Mater Sci 75:35–44CrossRefGoogle Scholar
  11. 11.
    Park In-Gyu, Thompson Anthony W (1988) Ductile fracture in spheroidized 1520 steel. Acta Metall 36 (7):1653–1664CrossRefGoogle Scholar
  12. 12.
    Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS (2009) Effect of martensite distribution on damage behaviour in dp600 dual phase steels. Mater Sci Eng 516:7–16CrossRefGoogle Scholar
  13. 13.
    Landron C, Bouaziz O, Maire E, Adrien J et al (2013) Experimental investigation of void coalescence in a dual phase steel using x-ray tomography. Acta Mater 61(18):6821–6829CrossRefGoogle Scholar
  14. 14.
    Brown M, Embury D (1973) A model of ductile fracture in two-phase materials. In: The 3rd international conference on strength of metals and alloys, London, pp 164–169Google Scholar
  15. 15.
    Thomason PF (1990) Ductile fracture of metals. Pergamon PressGoogle Scholar
  16. 16.
    Argon AS, Im J, Safoglu R (1975) Cavity formation from inclusions in ductile fracture. Metall Trans 6 (4):825–837CrossRefGoogle Scholar
  17. 17.
    Beremin FM (1981) Cavity formation from inclusions in ductile fracture of a508 steel. Metall Trans A 12 (5):723–731CrossRefGoogle Scholar
  18. 18.
    Chu CC, Needleman A. (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256CrossRefGoogle Scholar
  19. 19.
    Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids 17(3):201–217CrossRefGoogle Scholar
  20. 20.
    Huang Y (1991) Accurate dilatation rates for spherical voids in triaxial stress fields. J Appl Mech 58 (4):1084–1086CrossRefGoogle Scholar
  21. 21.
    Gurson AL (1975) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Yield criteria and flow rules for porous ductile media. Technical report (Brown University. Division of Engineering). Division of Engineering, Brown UniversityGoogle Scholar
  22. 22.
    Bettaieb MB, Lemoine X, Bouaziz O, Habraken AM, DuchÃne L (2011) Numerical modeling of damage evolution of dp steels on the basis of x-ray tomography measurements. Mech Mater 43(3):139–156CrossRefGoogle Scholar
  23. 23.
    Fansi Joseph, Balan Tudor, Lemoine Xavier, Maire Eric, Landron Caroline, Bouaziz Olivier, Bettaieb Mohamed Ben, Habraken Anne Marie (2013) Numerical investigation and experimental validation of physically based advanced {GTN} model for {DP} steels. Mater Sci Eng A 569:1–12CrossRefGoogle Scholar
  24. 24.
    Besson J (2010) Continuum models of ductile fracture: a review. International Journal of Damage Mechanics 19(1):3–52CrossRefGoogle Scholar
  25. 25.
    Pyttel T, John R, Hoogen M (2000) A finite element based model for the description of aluminium sheet blanking. Int J Mach Tool Manuf 40(14):1993–2002CrossRefGoogle Scholar
  26. 26.
    Chen ZH, Tang CY, Lee TC (2004) An investigation of tearing failure in fine-blanking process using coupled thermo-mechanical method. Int J Mach Tools Manuf 44:155–165CrossRefGoogle Scholar
  27. 27.
    Wu Xin, Bahmanpour H, Schmid K (2012) Characterization of mechanically sheared edges of dual phase steels. J Mater Proc Technol 212(6):1209–1224CrossRefGoogle Scholar
  28. 28.
    So H, FaAmann D, Hoffmann H, Golle R, Schaper M (2012) An investigation of the blanking process of the quenchable boron alloyed steel 22mnb5 before and after hot stamping process. J Mater Proc Technol 212(2):437–449CrossRefGoogle Scholar
  29. 29.
    Lee TC, Chan LC, Wu BJ (1995) Straining behaviour in blanking process - fine blanking vs conventional blanking. J Mater Proc Technol 48:105–111CrossRefGoogle Scholar
  30. 30.
    Hambli R (2001) Comparison between lemaitre and gurson damage models in crack growth simulation during blanking process. Int J Mech Sci 43(12):2769–2790CrossRefzbMATHGoogle Scholar
  31. 31.
    Ridha Hambli (2002) Prediction of burr height formation in blanking processes using neural network. Int J Mech Sci 44(10):2089–2102CrossRefzbMATHGoogle Scholar
  32. 32.
    Hilditch TB, Hodgson PD (2005) Development of the sheared edge in the trimming of steel and light metal sheet: Part 1, experimental observations. J Mater Proc Technol 169(2):184–191CrossRefGoogle Scholar
  33. 33.
    Mori K, Saito S, Maki S (2008) Warm and hot punching of ultra high strength steel sheet. {CIRP} Ann Manuf Technol 57(1):321–324CrossRefGoogle Scholar
  34. 34.
    So H, Hoffmann H, Golle R (2009) Blanking of press hardened ultra high strength steel. In: Proceedings of 2nd international conference on hot sheet metal forming of high-performance steel. Luleo, Sweden, pp 137–145Google Scholar
  35. 35.
    Sartkulvanich P, Kroenauer B, Golle R, Konieczny A, Altan T (2010) Finite element analysis of the effect of blanked edge quality upon stretch flanging of ahss. CIRP Ann Manuf Technol 59(1):279–282CrossRefGoogle Scholar
  36. 36.
    Mori K (2012) Smart hot stamping of ultra-high strength steel parts. Trans Nonferrous Met Soc China 22, Supplement 2:s496–s503CrossRefGoogle Scholar
  37. 37.
    Mori K, Abe Y, Kidoma Y, Kadarno P (2013) Slight clearance punching of ultra-high strength steel sheets using punch having small round edge. Int J Mach Tool Manuf 65(0):41–46CrossRefGoogle Scholar
  38. 38.
    Taupin E, Breitling J, Wu WT, Altan T (1996) Material fracture and burr formation in blanking results of {FEM} simulations and comparison with experiments. J Mater Proc Technol 59(1–2):68–78CrossRefGoogle Scholar
  39. 39.
    Breitling J, Chernauskas V, Taupin E, Altan T (1997) Precision shearing of billetsspecial equipment and process simulation. J Mater Proc Technol 71(1):119–125CrossRefGoogle Scholar
  40. 40.
    Goijaerts AM, Stegeman YW, Govaert LE, Brokken D, Brekelmans WAM, Baaijens FPT (2000) Can a new experimental and numerical study improve metal blanking? J Mater Proc Technol 103(1):44–50CrossRefGoogle Scholar
  41. 41.
    Goijaerts AM, Govaert LE, Baaijens FPT (2001) Evaluation of ductile fracture models for different metals in blanking. J Mater Process Technol 110(3):312–323CrossRefGoogle Scholar
  42. 42.
    Kim JH, Lee MG, Kim D, Matlock DK, Wagoner RH (2010) Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique. Mater Sci Eng A 527 (27–28):7353–7363CrossRefGoogle Scholar
  43. 43.
    Jha G, Das S, Lodh A, Haldar A (2012) Development of hot rolled steel sheet with 600 mpa uts for automotive wheel application. Mater Sci Eng A 552:457–463CrossRefGoogle Scholar
  44. 44.
    Taylor MD, Choi KS, Sun X, Matlock DK, Packard CE, Xu L, Barlat F (2014) Correlations between nanoindentation hardness and macroscopic mechanical properties in {DP980} steels. Mater Sci Eng AGoogle Scholar
  45. 45.
    Wang Kai, Luo Meng, Wierzbicki Tomasz (2014) Experiments and modeling of edge fracture for an ahss sheet. Int J Fract 187(2):245–268CrossRefGoogle Scholar
  46. 46.
    Hasegawa K., Kawamura K, Urabe T, Hosoya Y (2004) Effects of microstructure on stretch-flange-formability of 980 mpa grade cold-rolled ultra high strength steel sheets. ISIJ Int 44(3):603–609CrossRefGoogle Scholar
  47. 47.
    Bouaziz O, Douchamps S, Durrenberger L, Bui-Van A (2010) The double bending test: a promising new way for an optimal characterization of cut-edges ductility. In: International deep-drawing research group, London, pp 164–169Google Scholar
  48. 48.
    Levy BS, Gibbs M, Tyne CJ (2013) Failure during sheared edge stretching of dual-phase steels. Metall Mat Trans A 44(8):3635–3648CrossRefGoogle Scholar
  49. 49.
    Levy B, Van Tyne C (2012) Effect of a strain-hardening rate at uniform elongation on sheared edge stretching. J Mater Eng Perform:1–8Google Scholar
  50. 50.
    Levy B, Van Tyne C (2011) Review of the shearing process for sheet steels and its effect on sheared-edge stretching. J Mater Eng Perform:1–9Google Scholar
  51. 51.
    Gammage JJ, Wilkinson DS, Embury JD, Maire E (2005) Damage studies in heterogeneous aluminium alloys using x-ray tomography. Philos Mag 85(26–27):3191–3206Google Scholar
  52. 52.
    Maire E, Bordreuil C, Babout L, Boyer J-C (2005) Damage initiation and growth in metals. comparison between modelling and tomography experiments. Journal of the Mechanics and Physics of Solids 53(11):2411–2434CrossRefzbMATHGoogle Scholar
  53. 53.
    Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminium alloys using in situ tensile tests in x-ray tomography. Eng Fract Mech 78(15):2679–2690CrossRefGoogle Scholar
  54. 54.
    Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using x-ray microtomography characterization of damage in dual phase steels. Acta Mater 59(20):7564–7573CrossRefGoogle Scholar
  55. 55.
    Helfen L, Baumbach T, Mikulik P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86 (7):071915–071915–3CrossRefGoogle Scholar
  56. 56.
    Helfen L, Myagotin A, Rack A, Pernot P, Mikulík P, Di Michiel M, Baumbach T (2007) Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices. Phys Status Solidi A 204:2760–2765CrossRefGoogle Scholar
  57. 57.
    Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82(6)Google Scholar
  58. 58.
    Xu F, Helfen L, Moffat AJ, Johnson G, Sinclair I, Baumbach T (2010) Synchrotron radiation computed laminography for polymer composite failure studies. J Synchrotron Radiat 17(2):222–226CrossRefGoogle Scholar
  59. 59.
    Bull DJ, Helfen L, Sinclair I, Spearing SM, Baumbach T (2013) A synthesis of multi-scale 3d x-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos Sci Technol 75:55–61CrossRefGoogle Scholar
  60. 60.
    Morgeneyer TF, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography. Scr Mater 65(11):1010–1013CrossRefGoogle Scholar
  61. 61.
    Shen Y, Morgeneyer TF, Garnier J, Allais L, Helfen L, Crépin J (2013) Three-dimensional quantitative in situ study of crack initiation and propagation in {AA6061} aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater 61(7):2571–2582CrossRefGoogle Scholar
  62. 62.
    Ueda T, Helfen L, Morgeneyer TF (2014) In-situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with gtn-type simulations. Accepted for publication in Acta Materialia Google Scholar
  63. 63.
    Morgeneyer TF, Helfen L, Mubarak H, Hild F (2013) 3d digitavolume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp Mech 53(4):543–556CrossRefGoogle Scholar
  64. 64.
    Tong W, Tao H, Jiang XQ, Zhang NA, Marya MP, Hector LG, Gayden XHQ (2005) Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures. Metall Mater Trans A Physical metallurgy and materials science 36A(10):2651–2669CrossRefGoogle Scholar
  65. 65.
    Le Jolu T, Morgeneyer TF, Denquin A, Sennour M, Laurent A, Besson J, Gourgues-Lorenzon A-F (2014) Microstructural characterization of internal welding defects and their effect on the plastic behavior of FSW joints of AA2198 Al-Cu-Li alloy. Metall Mater Trans A 45:5531–5544CrossRefGoogle Scholar
  66. 66.
    Douissard P A, Cecilia A, Rochet X, Chapel X, Martin T, van de Kamp T, Helfen L, Baumbach T, Luquot L, Xiao X, Meinhardt J, Rack A (2012) A versatile indirect detector design for hard x-ray microimaging. J Instrum 7(09):P09016CrossRefGoogle Scholar
  67. 67.
    Myagotin A, Voropaev A, Helfen L, Hanschke D, Baumbach T (2013) Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on multi-core clusters. IEEE Trans Image Process 22(12):5348–5361CrossRefGoogle Scholar
  68. 68.
    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imagej. Biophoton Int 11(7):36–42Google Scholar
  69. 69.
    Landron C, Maire E, Adrien J, Bouaziz O, Di Michiel M, Cloetens P, Suhonen H (2011) Resolution effect on the study of ductile damage using synchrotron x-ray tomographyGoogle Scholar
  70. 70.
    Morgeneyer TF, Besson J, Proudhon H, Starink MJ, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in {AA2139} al-alloy sheet. Acta Mater 57(13):3902–3915CrossRefGoogle Scholar
  71. 71.
    Hild F (2002) A software for displacement field measurements by digital image correlation. LMT Cachan, report 252Google Scholar
  72. 72.
    Besson J., Cailletaud G., Chaboche, Forest SJ-L (2010) Non linear mechanics of materials. SpringerGoogle Scholar
  73. 73.
    Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24 (10):1642–1693CrossRefzbMATHGoogle Scholar
  74. 74.
    Rèche D, Besson J, Sturel T, Lemoine X, Gourgues-Lorenzon AF (2012) Analysis of the air-bending test using finite-element simulation: application to steel sheets. Int J Mech Sci 57(1):43–53CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  1. 1.MINES ParisTechPSL Research University, Centre des Matériaux, CNRS UMR 7633EvryFrance
  2. 2.ArcelorMittal ResearchMaizières-lès-Metz CedexFrance
  3. 3.European Synchrotron Radiation FacilityGrenoble CedexFrance
  4. 4.ANKAKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  5. 5.Université de Lorraine, LEM3, UMR CNRS 7239Metz Cedex 01France
  6. 6.INSA-Lyon, MATEIS CNRS UMR 5510VilleurbanneFrance

Personalised recommendations