Experimental Mechanics

, Volume 55, Issue 9, pp 1705–1715 | Cite as

In Situ Microscopic Investigation to Validate Acoustic Emission Monitoring

  • B. Wisner
  • M. Cabal
  • P. A. Vanniamparambil
  • J. Hochhalter
  • W. P. Leser
  • A. Kontsos
Article

Abstract

A novel experimental mechanics technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is discussed to investigate microstructure-sensitive mechanical behavior and damage of metals and to validate AE related information. Validation for the use of AE method was obtained by using aluminum alloy sharp notch specimens with different geometries tested inside the microscope and compared to results obtained outside the microscope, as well as to previously published data on similar investigations at the laboratory specimen scale. Additionally, load data were correlated with both AE information and microscopic observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The reported AE results are in excellent agreement with similar findings at the mesoscale, while they are further correlated with in situ and post mortem observations of microstructural damage processes.

Keywords

In-situ SEM Acoustic emission Damage precursors Fracture 

References

  1. 1.
    Bian G, Chen Y, Hu J, Yang M (2011) Research on model of fatigue microcrack-nucleating in aluminum alloy. The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, pp. 416–419Google Scholar
  2. 2.
    Castelluccio GM, Musinski WD, McDowell DL (2014) Recent developments in assessing microstructure-sensitive early stage fatigue of polycrystals. Curr Opinion Solid State Mater Sci 18:180–187CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Shi H-J, Gu J, Li C, Kadau K, Luesebrink O (2014) Crystallographic analysis for fatigue small crack growth behaviors of a nickel-based single crystal by in situ SEM observation. Theor Appl Fract Mech 69:80–89CrossRefGoogle Scholar
  4. 4.
    Chai G, Peng RL, Johansson S (2014) Fatigue behaviors in duplex stainless steel studied using in-situ SEM/EBSD method. Procedia Mater Sci 3:1748–1753CrossRefGoogle Scholar
  5. 5.
    Akiniwa Y, Tanaka K, Matsui E (1988) Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminium alloy 2024-T3. Mater Sci Eng A 104:105–115CrossRefGoogle Scholar
  6. 6.
    Borrego LP, Costa JM, Silva S, Ferreira JM (2004) Microstructure dependent fatigue crack growth in aged hardened aluminium alloys. Int J Fatigue 26:1321–1331CrossRefGoogle Scholar
  7. 7.
    McDowell DL, Gall K, Horstemeyer MF, Fan J (2003) Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng Fract Mech 70:49–80CrossRefGoogle Scholar
  8. 8.
    Merati A (2005) A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3. Int J Fatigue 27:33–44CrossRefGoogle Scholar
  9. 9.
    Zhang JZ, He XD, Tang H, Du SY (2008) Direct high resolution in situ SEM observations of small fatigue crack opening profiles in the ultra-fine grain aluminium alloy. Mater Sci Eng A 485:115–118CrossRefGoogle Scholar
  10. 10.
    Zhang W, Liu Y (2012) Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing. Int J Fatigue 42:14–23CrossRefGoogle Scholar
  11. 11.
    Zhong Z, Ai X, Liu Z, Liu J, Xu Q (2014) Surface morphology and microcrack formation for 7050-T7451 aluminum alloy in high speed milling. Int J Adv Manuf TechnolGoogle Scholar
  12. 12.
    Hazeli K, Askari H, Cuadra J, Streller F, Carpick RW, Zbib HM et al (2015) Microstructure-sensitive investigation of magnesium alloy fatigue. Int J Plast 68:55–76CrossRefGoogle Scholar
  13. 13.
    Hazeli K, Cuadra J, Streller F, Barr CM, Taheri ML, Carpick RW et al (2014) Three-dimensional effects of twinning in magnesium alloys. Scr Mater 100:9–12CrossRefGoogle Scholar
  14. 14.
    Hazeli K, Cuadra J, Vanniamparambil PA, Kontsos A (2013) In situ identification of twin-related bands near yielding in a magnesium alloy. Scr Mater 68:83–86CrossRefGoogle Scholar
  15. 15.
    Ishihara S, Nan Z, Goshima T (2007) Effect of microstructure on fatigue behavior of AZ31 magnesium alloy. Mater Sci Eng A 468–470:214–222CrossRefGoogle Scholar
  16. 16.
    Koike J, Fujiyama N, Ando D, Sutou Y (2010) Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scr Mater 63:747–750CrossRefGoogle Scholar
  17. 17.
    Boehlert CJ, Cowen CJ, Tamirisakandala S, McEldowney DJ, Miracle DB (2006) In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy. Scr Mater 55:465–468CrossRefGoogle Scholar
  18. 18.
    Bridier F, McDowell DL, Villechaise P, Mendez J (2009) Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int J Plast 25:1066–1082MATHCrossRefGoogle Scholar
  19. 19.
    Chan KS (2010) Roles of microstructure in fatigue crack initiation. Int J Fatigue 32:1428–1447CrossRefGoogle Scholar
  20. 20.
    Kartal ME, Cuddihy MA, Dunne FPE (2014) Effects of crystallographic orientation and grain morphology on crack tip stress state and plasticity. Int J Fatigue 61:46–58CrossRefGoogle Scholar
  21. 21.
    Huda Z, Taib NI, Zaharinie T (2009) Characterization of 2024-T3: an aerospace aluminum alloy. Mater Chem Phys 113:515–517CrossRefGoogle Scholar
  22. 22.
    Xue Y, El Kadiri H, Horstemeyer MF, Jordon JB, Weiland H (2007) Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater 55:1975–1984CrossRefGoogle Scholar
  23. 23.
    Xue Y, McDowell DL, Horstemeyer MF, Dale MH, Jordon JB (2007) Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng Fract Mech 74:2810–2823CrossRefGoogle Scholar
  24. 24.
    Yao Z, Wagoner RH (1993) Active slip in aluminum multicrystals. Acta Metall Mater 41:451–468CrossRefGoogle Scholar
  25. 25.
    Khan F, Bartoli I, Rajaram S, Vanniamparambil PA, Kontsos A, Bolhassani M et al Acoustics and temperature based NDT for damage assessment of concrete masonry system subjected to cyclic loading. ed, 2014. 9063:90630B-90630B-10Google Scholar
  26. 26.
    Tittmann BR, Buck O (1980) Fatigue lifetime prediction with the aid of SAW NDE. J Nondestruct Eval 1:123–136CrossRefGoogle Scholar
  27. 27.
    Bassim MN, Lawrence SS, Liu CD (1994) Detection of the onset of fatigue crack growth in rail steels using acoustic emission. Eng Fract Mech 47:207–214CrossRefGoogle Scholar
  28. 28.
    Cuadra J, Vanniamparambil PA, Hazeli K, Bartoli I, Kontsos A (2013) Damage quantification in polymer composites using a hybrid NDT approach. Compos Sci Technol 83:11–21CrossRefGoogle Scholar
  29. 29.
    Cuadra J, Vanniamparambil PA, Servansky D, Bartoli I, Kontsos A (2015) Acoustic emission source modeling using a data-driven approach. J Sound Vib 341:222–236CrossRefGoogle Scholar
  30. 30.
    Meriaux J, Boinet M, Fouvry S, Lenain JC (2010) Identification of fretting fatigue crack propagation mechanisms using acoustic emission. Tribol Int 43:2166–2174CrossRefGoogle Scholar
  31. 31.
    Ouyang C, Landis E, Shah SP (1991) Damage assessment in concrete using quantitative acoustic emission. J Eng Mech 117:2681–2698CrossRefGoogle Scholar
  32. 32.
    Richeton T, Dobron P, Chmelik F, Weiss J, Louchet F (2006) On the critical character of plasticity in metallic single crystals. Mater Sci Eng A 424:190–195CrossRefGoogle Scholar
  33. 33.
    Roberts TM, Talebzadeh M (2003) Fatigue life prediction based on crack propagation and acoustic emission count rates. J Constr Steel Res 59:679–694CrossRefGoogle Scholar
  34. 34.
    Roberts TM, Talebzadeh M (2003) Acoustic emission monitoring of fatigue crack propagation. J Constr Steel Res 59:695–712CrossRefGoogle Scholar
  35. 35.
    Vanniamparambil PA, Bartoli I, Hazeli K, Cuadra J, Schwartz E, Saralaya R et al (2012) An integrated structural health monitoring approach for crack growth monitoring. J Intell Mater Syst Struct 23:1563–1573CrossRefGoogle Scholar
  36. 36.
    Vanniamparambil PA, Bolhassani M, Carmi R, Khan F, Bartoli I, Moon FL et al (2014) A data fusion approach for progressive damage quantification in reinforced concrete masonry walls. Smart Mater Struct 23:015007CrossRefGoogle Scholar
  37. 37.
    Vanniamparambil PA, Cuadra J, Guclu U, Bartoli I, Kontsos A Cross-validated detection of crack initiation in aerospace materials, ed, 2014, 9064:906411–906429Google Scholar
  38. 38.
    Vanniamparambil PA, Guclu U, Kontsos A (2015) Identification of crack initiation in aluminum alloys using acoustic emission. Exp MechGoogle Scholar
  39. 39.
    Yu J, Ziehl P, Zárate B, Caicedo J (2011) Prediction of fatigue crack growth in steel bridge components using acoustic emission. J Constr Steel Res 67:1254–1260CrossRefGoogle Scholar
  40. 40.
    Jin H, Lu WY, Halda S, Bruck HA (2011) Microscale characterization of granular deformation near a crack tip. J Mater Sci 46:6596–6602CrossRefGoogle Scholar
  41. 41.
    Kang J, Ososkov Y, Embury JD, Wilkinson DS (2007) Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56:999–1002CrossRefGoogle Scholar
  42. 42.
    Lagattu F, Bridier F, Villechaise P, Brillaud J (2006) In-plane strain measurements on a microscopic scale by coupling digital image correlation and an in situ SEM technique. Mater Charact 56:10–18CrossRefGoogle Scholar
  43. 43.
    Beattie A (1983) Acoustic emission, principles and instrumentation. J Acoust Emission 2:95–128Google Scholar
  44. 44.
    Matthews JR (1983) Acoustic emission. vol. 2. CRC PressGoogle Scholar
  45. 45.
    Shull PJ (2002) Nondestructive evaluation: theory, techniques, and applications. CRC pressGoogle Scholar
  46. 46.
    Ohtsu M, Ono K (1988) AE source location and orientation determination of tensile cracks from surface observation, NDT Int 21:143–150, 6Google Scholar
  47. 47.
    Toyama N, Koo JH, Oishi R, Enoki M, Kishi T (2001) Two-dimensional AE source location with two sensors in thin CFRP plates. J Mater Sci Lett 20:1823–1825CrossRefGoogle Scholar
  48. 48.
    Tobias A (1976) Acoustic-emission source location in two dimensions by an array of three sensors. Non-Destructive Test 9:9–12, 2Google Scholar
  49. 49.
    Wang Q, Chu F (2001) Experimental determination of the rubbing location by means of acoustic emission and wavelet transform. J Sound Vib 248:91–103CrossRefGoogle Scholar
  50. 50.
    Bolotin VV, Shipkov AA (2001) Mechanical aspects of corrosion fatigue and stress corrosion cracking. Int J Solids Struct 38:7297–7318MATHCrossRefGoogle Scholar
  51. 51.
    Winkler SL, Flower HM (2004) Stress corrosion cracking of cast 7XXX aluminium fibre reinforced composites. Corros Sci 46:903–915CrossRefGoogle Scholar
  52. 52.
    Banerjee S, Mal AK, Prosser WH (2004) Analysis of transient lamb waves generated by dynamic surface sources in thin composite plates. J Acoust Soc Am 115:1905CrossRefGoogle Scholar
  53. 53.
    Bentahar M, El Guerjouma R (2009) Monitoring progressive damage in polymer-based composite using nonlinear dynamics and acoustic emission. J Acoust Soc Am 125:EL39–EL44CrossRefGoogle Scholar
  54. 54.
    Sause MGR, Gribov A, Unwin AR, Horn S (2012) Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recogn Lett 33:17–23CrossRefGoogle Scholar
  55. 55.
    Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45:4–25, 1.Google Scholar
  56. 56.
    Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58:25–27CrossRefGoogle Scholar
  57. 57.
    May A, Belouchrani MA, Manaa A, Bouteghrine Y (2011) Influence of fatigue damage on the mechanical behaviour of 2024-T3 aluminum alloy. Procedia Eng 10:798–806CrossRefGoogle Scholar
  58. 58.
    Przybyla C, Prasannavenkatesan R, Salajegheh N, McDowell DL (2010) Microstructure-sensitive modeling of high cycle fatigue. Int J Fatigue 32:512–525CrossRefGoogle Scholar
  59. 59.
    Biallas G, Maier HJ (2007) In-situ fatigue in an environmental scanning electron microscope - potential and current limitations. Int J Fatigue 29:1413–1425CrossRefGoogle Scholar
  60. 60.
    Moser B, Kuebler J, Meinhard H, Muster W, Michler J (2005) Observation of instabilities during plastic deformation by in-situ SEM indentation experiments. Adv Eng Mater 7:388–392CrossRefGoogle Scholar
  61. 61.
    Tschopp MA, Bartha BB, Porter WJ, Murray PT, Fairchild SB (2009) Microstructure-dependent local strain behavior in polycrystals through in-situ scanning electron microscope tensile experiments. Metall Mater Trans A Phys Metall Mater Sci 40:2363–2368CrossRefGoogle Scholar
  62. 62.
    Zhang W, Liu Y (2012) In situ SEM testing for crack closure investigation and virtual crack annealing model development. Int J Fatigue 43:188–196CrossRefGoogle Scholar
  63. 63.
    Euh K, Lee J-M, Nam D-H, Lee S (2011) In-situ fracture observation and fracture toughness analysis of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys. Metall Mater Trans A 42:3961–3968CrossRefGoogle Scholar
  64. 64.
    Vanniamparambil P, Guclu U, Kontsos A (2015) Identification of crack initiation in aluminum alloys using acoustic emission. Exp Mech 1–14Google Scholar
  65. 65.
    Xue Y, McDowell D, Horstemeyer M, Dale M, Jordon J (2007) Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng Fract Mech 74:2810–2823CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  • B. Wisner
    • 1
  • M. Cabal
    • 1
  • P. A. Vanniamparambil
    • 1
  • J. Hochhalter
    • 2
  • W. P. Leser
    • 2
  • A. Kontsos
    • 1
  1. 1.Department of Mechanical Engineering & Mechanics, Theoretical & Applied Mechanics GroupDrexel UniversityPhiladelphiaUSA
  2. 2.Durability, Reliability, and Damage Tolerance BrachNASA Langley Research CenterHamptonUSA

Personalised recommendations