Advertisement

Experimental Mechanics

, Volume 55, Issue 9, pp 1681–1690 | Cite as

In-Situ Measurements of Free-Standing, Ultra-Thin Film Cracking in Bending

  • E. HintsalaEmail author
  • D. Kiener
  • J. Jackson
  • W. W. Gerberich
Article

Abstract

Metallic thin films are widely used and relied upon for various technologies. Direct measurements of fracture toughness are rare for metallic thin films and existing methods for obtaining these measurements often do not provide characterization of the cracking process for determination of crack growth mechanisms. To rectify this, we explore a new technique which utilizes doubly clamped, in-situ three-point bend testing of micro-scale and nano-scale specimens. This is done by in-situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM) mechanical testing for specimens with thicknesses of 2500 nm (SEM), 500 nm (SEM) and 100 nm (TEM). For in-situ TEM, a novel notching method is employed using the converged electron beam which achieves a notch radius of approximately 5 nm. Additionally, we present supporting characterization using Electron Backscatter Diffraction (EBSD) for 2500 nm thick specimens as a demonstration of the potential of this technique for understanding local deformation. Analysis of the acquired data presents several issues that require addressing, and recommendations for future improvements are given.

Keywords

Electron backscatter diffraction Fracture testing Electron micrscopy Steel Nanomechanics 

Notes

Acknowledgments

Funding by INL (DOE) Grant #00109759 (Sub-contract to DE-AC07-951014517) and the Marshall Plan scholarship foundation via Montanuniversität Leoben. The authors would also like to thank Ruth Treml, Peter Imrich and Stefan Wurster for their help on this project. DK acknowledges funding from the Austrian Science Fund FWF (project number P25325-N20).

Supplementary material

References

  1. 1.
    De Wolf I, Van Spengen WM (2002) Techniques to study the reliability of metal RF MEMS capacitive switches. Microelectron Reliab 42(9–11):1789–1794CrossRefGoogle Scholar
  2. 2.
    Lee H, Coutu RA, Mall S, Leedy KD (2006) Characterization of metal and metal alloy films as contact materials in MEMS switches. J Micromech Microeng 16(3):557CrossRefGoogle Scholar
  3. 3.
    Lacour SP, Jones J, Suo Z, Wagner S (2004) Design and performance of thin metal film interconnects for skin-like electronic circuits. Electron Device Lett IEEE 25(4):179–181CrossRefGoogle Scholar
  4. 4.
    Faupel F, Yang CH, Chen ST, Ho PS (1989) Adhesion and deformation of metal/polyimide layered structures. J Appl Phys 65(5):1911–1917CrossRefGoogle Scholar
  5. 5.
    Wellner P, Kraft O, Dehm G, Andersons J, Arzt E (2004) Channel cracking of β-NiAl thin films on Si substrates. Acta Mater 52(8):2325–2336CrossRefGoogle Scholar
  6. 6.
    Cordill MJ, Taylor A, Schalko J, Dehm G (2010) Fracture and delamination of chromium thin films on polymer substrates. Metall Mater Trans A 41(4):870–875CrossRefGoogle Scholar
  7. 7.
    Read DT, Dally JW (1995) Fatigue of microlithographically-patterned free-standing aluminum thin film under axial stresses. J Electron Packag 117(1):1–6CrossRefGoogle Scholar
  8. 8.
    Kodera M et al (2005) Stress corrosion cracking of Cu interconnects during CMP with a Cu/porous low-k structure. J Electrochem Soc 152(6):G506–G510CrossRefGoogle Scholar
  9. 9.
    Volinsky AA, Vella JB, Gerberich WW (2003) Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1):201–210CrossRefGoogle Scholar
  10. 10.
    Kim K, Artyukhov VI, Regan W, Liu Y, Crommie MF, Yakobson BI, Zettl A (2011) Ripping graphene: preferred directions. Nano Lett 12(1):293–297CrossRefGoogle Scholar
  11. 11.
    Sundararajan S, Bhushan B (2002) Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sensors Actuators A Phys 101(3):338–351CrossRefGoogle Scholar
  12. 12.
    Ast J, Przybilla T, Maier V, Durst K, Göken M (2014) Microcantilever bending experiments in NiAl–Evaluation, size effects, and crack tip plasticity. J Mater Res 29(18):2129–2140CrossRefGoogle Scholar
  13. 13.
    Völker B, Venkatesan S, Heinz W, Matoy K, Roth R, Batke JM, Roth R, Batke J-M, Cordill MJ, Dehm G (2015) Following crack path selection in multifilm structures with weak and strong interfaces by in situ 4-point-bending. J Mater Res 30(08):1090–1097CrossRefGoogle Scholar
  14. 14.
    Beaber AR, Nowak JD, Ugurlu O, Mook WM, Girshick SL, Ballarini R, Gerberich WW (2011) Smaller is tougher. Philos Mag 91(7–9):1179–1189CrossRefGoogle Scholar
  15. 15.
    Krafft JM, Sullivan AM, Boyle RW (1961) Effect of dimensions on fast fracture instability of notched sheets. Proc Crack Propag Symp 1:8–28Google Scholar
  16. 16.
    Brown WF, Srawley JE (1966) Plane strain crack toughness testing of high strength metallic materials. ASTM International, PhiladelphiaGoogle Scholar
  17. 17.
    Knott JF (1973) Fundamentals of fracture mechanics. Gruppo Italiano FratturaGoogle Scholar
  18. 18.
    Hellan K (1984) Introduction to fracture mechanics. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Hosokawa H, Desai AV, Haque MA (2008) Plane stress fracture toughness of freestanding nanoscale thin films. Thin Solid Films 516(18):6444–6447CrossRefGoogle Scholar
  20. 20.
    Paviot VM, Vlassak JJ, Nix WD (1994) Measuring the mechanical properties of thin metal films by means of bulge testing of micromachined windows. MRS Proc 356:579, Cambridge University PressGoogle Scholar
  21. 21.
    Chen J, Bull SJ (2006) Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films 494:1–7CrossRefGoogle Scholar
  22. 22.
    Haque MA, Saif MTA (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42(1):123–128CrossRefGoogle Scholar
  23. 23.
    Dehm G, Legros M, Heiland B (2006) In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. J Mater Sci 41(14):4484–4489CrossRefGoogle Scholar
  24. 24.
    Minor AM, Asif SS, Shan Z, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5(9):697–702CrossRefGoogle Scholar
  25. 25.
    Jaya BN, Jayaram V, Biswas SK (2012) A new method for fracture toughness determination of graded (Pt, Ni) Al bond coats by microbeam bend tests. Philos Mag 92(25–27):3326–3345CrossRefGoogle Scholar
  26. 26.
    Jaya BN, Jayaram V (2014) Crack stability in edge-notched clamped beam specimens: modeling and experiments. Int J Fract 188(2):213–228CrossRefGoogle Scholar
  27. 27.
    Jaya BN, Kirchlechner C, Dehm G (2015) Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J Mater Res 30(05):686–698CrossRefGoogle Scholar
  28. 28.
    Moser G, Felber H, Rashkova B, Imrich PJ, Kirchlechner C, Grosinger W, Motz C, Dehm G, Kiener D (2012) Sample preparation by metallography and focused ion beam for nanomechanical testing. Pract Metallogr 49(6):343–355CrossRefGoogle Scholar
  29. 29.
    Egerton RF, Cheng SC (1987) Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21(3):231–244CrossRefGoogle Scholar
  30. 30.
    Kumar S, Li X, Haque MA, Gao H (2011) Is stress concentration relevant for nanocrystalline metals? Nano Lett 11(6):2510–2516CrossRefGoogle Scholar
  31. 31.
    Kumar S, Haque MA, Gao H (2013) Transformation induced toughening and flaw tolerance in pure nanocrystalline aluminum. Int J Plast 44:121–128CrossRefGoogle Scholar
  32. 32.
    Kiener D, Zhang Z, Sturm S, Carzottes S, Imrich PJ, Kirchlechner C, Dehm G (2012) Advanced nanomechanics in the TEM: effects of thermal annealing on FIB prepared Cu samples. Philos Mag 92(25–27):3269–3289CrossRefGoogle Scholar
  33. 33.
    May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr Mater 53(2):189–194CrossRefGoogle Scholar
  34. 34.
    Schwarzer RA (1997) Advances in crystal orientation mapping with the SEM and TEM. Ultramicroscopy 67(1):19–24CrossRefGoogle Scholar
  35. 35.
    Bakker AD (1995) Evaluation of elastic fracture mechanics parameters for bend specimens. Int J Fract 71(4):323–343CrossRefGoogle Scholar
  36. 36.
    Shih CF (1981) Relationships between the J-integral and the crack opening displacement for stationary and extending cracks. J Mech Phys Solids 29(4):305–326zbMATHCrossRefGoogle Scholar
  37. 37.
    Ye T, Suo Z, Evans AG (1992) Thin film cracking and the roles of substrate and interface. Int J Solids Struct 29(21):2639–2648CrossRefGoogle Scholar
  38. 38.
    Drory MD, Dauskardt RH, Kant A, Ritchie RO (1995) Fracture of synthetic diamond. J Appl Phys 78(5):3083–3088CrossRefGoogle Scholar
  39. 39.
    Pugno N (2005) Predictions of strength in MEMS components with defects - a novel experimental–theoretical approach. Int J Solids Struct 42(2):647–61zbMATHCrossRefGoogle Scholar
  40. 40.
    Armstrong DEJ, Haseeb ASMA, Roberts SG, Wilkinson AJ, Bade K (2012) Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films. Thin Solid Films 520(13):4369–4372CrossRefGoogle Scholar
  41. 41.
    Chen J, Bull SJ (2013) Finite element modelling of delamination in multilayer coatings. Nanosci Nanotechnol Lett 5(7):795–800CrossRefGoogle Scholar
  42. 42.
    Alturi SN, Nishioka TL, Nakagaki M (1984) Incremental path-independent integrals in inelastic and dynamic fracture mechanics. Eng Fract Mech 20(2):209–244CrossRefGoogle Scholar
  43. 43.
    Brust FW, McGowan JJ, Atluri SN (1986) A combined numerical/experimental study of ductile crack growth after a large unloading using T*, J and CTOA criteria. Eng Fract Mech 23(3):537–550CrossRefGoogle Scholar
  44. 44.
    Chen J, Bull SJ (2006) On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf Coat Technol 201(7):4289–4293CrossRefGoogle Scholar
  45. 45.
    Zhu X-K, Joyce JA (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech 85:1–46CrossRefGoogle Scholar
  46. 46.
    Guo EY, Xie HX, Singh SS, Kirubanandham A, Jing T, Chawla N (2014) Mechanical characterization of microconstituents in a cast duplex stainless steel by Micropillar compression. Mater Sci Eng A 598:98–105CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Materials PhysicsMontanuniversität LeobenLeobenAustria
  3. 3.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations