Skip to main content
Log in

Dynamic Inter-Particle Force Inference in Granular Materials: Method and Application

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Inter-particle force transmission in granular media plays an important role in the macroscopic static and dynamic behavior of these materials. This paper presents a method for inferring inter-particle forces in opaque granular materials during dynamic experiments. By linking experimental measurements of particle kinematics and volume-averaged strains to forces, the method provides a new tool for quantitatively studying force transmission and its relation to macroscopic behavior. We provide an experimental validation of the method, comparing inter-particle forces measured in a simple impact test on two-dimensional rubber grains to a finite-element simulation. We also provide an application of the method, using it to study inter-particle forces during impact of an intruder on a granular bed. We discuss the current challenges for applying the method to both model materials and real geologic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bathurst RJ, Rothenburg L (1990) Observations on stress-force-fabric relationships in idealized granular materials. Mech Mater 9(1):65–80

    Article  Google Scholar 

  2. Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech 48(2):339–344

    Article  MATH  Google Scholar 

  3. Radjai F, Wolf DE, Jean M, Moreau JJ (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64

    Article  Google Scholar 

  4. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anistropy in idealized granular materials. Géotechnique 39(4):601–614

    Article  Google Scholar 

  5. Somfai E, Roux J-N, Snoeijer JH, van Hecke M, van Saarloos W (2005) Elastic wave propagation in confined granular systems. Phys Rev E 72:021301

    Article  Google Scholar 

  6. da Cruz F, Emam S, Prochnow M, Roux J-N, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72(2):021309

    Article  Google Scholar 

  7. Liu C-h, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S, Narayan O, Witten TA (1995) Force fluctuations in bead packs. Science 269(5223):513–515

    Article  Google Scholar 

  8. Mueth DM, Jaeger HM, Nagel SR (1998) Force distribution in a granular medium. Phys Rev E 57 (3):3164

    Article  Google Scholar 

  9. Ciamarra MP, Lara AH, Lee AT, Goldman DI, Vishik I, Swinney HL (2004) Dynamics of drag and force distributions for projectile impact in a granular medium. Phys Rev Lett 92(19): 194301

    Article  Google Scholar 

  10. Coppersmith SN, Liu C-h, Majumdar S, Narayan O, Witten TA (1996) Model for force fluctuations in bead packs. Phys Rev E 53(5):4673

    Article  Google Scholar 

  11. Clark AH, Petersen AJ, Behringer RP (2014) Collisional model for granular impact dynamics. Phys Rev E 89(1):012201

    Article  Google Scholar 

  12. Drescher A, de Josselin de Jong G (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20:337–340

    Article  Google Scholar 

  13. Howell D, Behringer RP, Veje C (1999) Stress fluctuations in a 2d granular couette experiment, A continuous transition. Phys Rev Lett 82:5241–5244

    Article  Google Scholar 

  14. Majmudar TS, Behringer RP (2005) Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(1079):1079–1082

    Article  Google Scholar 

  15. Clark AH, Kondic L, Behringer RP (2012) Particle scale dynamics in granular impact. Phys Rev Lett 238302:109

    Google Scholar 

  16. Hurley R, Marteau E, Ravichandran G, Andrade JE (2014) Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J Mech Phys Solids 63:154–166

    Article  Google Scholar 

  17. Jongchansitto P, Balandraud X, Grédiac M, Beitone C, Preechawuttipong I (2014) Using infrared thermography to study hydrostatic stress networks in granular materials. Soft matter 10(43):8603–8607

    Article  Google Scholar 

  18. Saadatfar M, Sheppard AP, Senden TJ, Kabla AJ (2012) Mapping forces in a 3d elastic assembly of grains. J Mech Phys Solids 60(1):55–66

    Article  MATH  Google Scholar 

  19. Alshibli KA, Reed AH (2010) Applications of X-ray Microtomography to Geomaterials, 1st edn. Wiley-ISTE

  20. Desrues J, Viggiani G, Bésuelle P (eds) (2006) Advances in X-ray Tomography for Geomaterials. Wiley-ISTE

  21. Wang JY, Park L, Fu Y (2007) Representation of real particles for dem simulation using x-ray tomography. Constr Build Mater 21(2):338–346

    Article  Google Scholar 

  22. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer

  23. Hall S, Wright J, Pirling T, Andò E, Hughes D, Viggiani G (2011) Can intergranular force transmission be identified in sand Granul Matter 13:251–254

    Article  Google Scholar 

  24. Martins RV, Margulies L, Schmidt S, Poulsen HF, Leffers T (2004) Simultaneous measurement of the strain tensor of 10 individual grains embedded in an al tensile sample. Mater Sci Eng: A 387–389(0):84–88

    Google Scholar 

  25. Oddershede J, Schmidt S, Poulsen HF, Sørensen OH, Wright J, Reimers W (2010) Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. J Appl Crystallogr 43 (3):539–549

    Article  Google Scholar 

  26. Poulsen HF (2004) Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer, New York

    Book  Google Scholar 

  27. Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  28. Dassault Systèmes Simulia (2011) Abaqus 6.11 Analysis User’s Manual

  29. Vic-2D Users’ Manual (2006) Solutions, Correlated

  30. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J et al (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  31. MATLAB (2013) version 8.1.0 (R2013a). The MathWorks Inc., Natick, Massachusetts

    Google Scholar 

  32. Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier

  33. Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795–803

    Article  Google Scholar 

  34. Grant M, Boyd S (2008) CVX: Matlab software for disciplined convex programming (web page and software). http://stanford.edu/boyd/cvx

  35. Hall SA, Wright J (2014) Characterisation of 3d force transmission in real granular media. Presented at the International Conference on Experimental Mechanics

  36. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  37. Dwivedi SK, Teeter RD, Felice CW, Gupta YM (2008) Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J Appl Phys 104(8):083502

    Article  Google Scholar 

  38. Tsimring LS, Volfson D (2005) Modeling of impact cratering in granular media. In: Garca-Rojo R, Herrmann HJ, McNamara S (eds) Powders and Grains 2005, vol 2. A. A. Balkema, Rotterdam, pp 1215–1223

    Google Scholar 

Download references

Acknowledgments

Support by the Air Force Office of Scientific Research Grant # FA9550-12-1-0091 through the University Center of Excellence in High-Rate Deformation Physics of Heterogenous Materials is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.E. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, R., Lim, K., Ravichandran, G. et al. Dynamic Inter-Particle Force Inference in Granular Materials: Method and Application. Exp Mech 56, 217–229 (2016). https://doi.org/10.1007/s11340-015-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0063-8

Keywords

Navigation