Skip to main content
Log in

A method for mechanical characterization of small blood vessels and vascular grafts

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

For small animal vascular disease models and for the development of small-diameter vascular prosthesis, biomechanical data is important. However, these tiny structures with low diameter (<1 mm) require special handling and testing. To allow investigation of a high sample number, a custom designed, easy probe fixation was connected to a tensile testing system. In hoop tensile measurements, ring-shaped specimens were loaded circumferentially via two pins. The setup was used for an atherosclerosis experiment in mice where 238 ring-samples of thoracic aortae were tested. Significantly higher ultimate tensile force (413 ± 123mN) and aortic stiffness (34.3 ± 4.3 N/m) were seen in atherosclerotic group, compared to control group (347 ± 108mN and 31.5 ± 3.8 N/m). Mechanical properties also varied in both groups along the aorta, with tendency to increased strength and higher stiffness in distal locations. A sensitive preparation and measurement technique has been developed for the characterization of very small tubular specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kassab GS (2006) Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface 3:719–740

    Article  Google Scholar 

  2. Assoul N, Flaud P, Chaouat M, Letourneur D, Bataille I (2008) Mechanical properties of rat thoracic and abdominal aortas. J Biomech 41:2227–2236

    Article  Google Scholar 

  3. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G (2010) Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A 93:716–723

    Google Scholar 

  4. Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM 3rd (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30:624–635

    Article  Google Scholar 

  5. Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238:290–302

    Article  MathSciNet  Google Scholar 

  6. Hayashi K, Stergiopulos N, Meister J-J, Greenwald S, Rachev A (2000) Techniques in the determination of the mechanical properties and constitutive laws of arterial walls. Biomechanical Systems: CRC Press

  7. Keyes JT, Haskett DG, Utzinger U, Azhar M, Vande Geest JP (2011) Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J Biomech Eng 133:075001

    Article  Google Scholar 

  8. Agianniotis A, Stergiopulos N (2012) Wall properties of the apolipoprotein E-deficient mouse aorta. Atherosclerosis 223:314–320

    Article  Google Scholar 

  9. Imaizumi K (2011) Diet and atherosclerosis in apolipoprotein E-deficient mice. Biosci Biotechnol Biochem 75:1023–1035

    Article  Google Scholar 

  10. Claes E, Atienza JM, Guinea GV, Rojo FJ, Bernal JM, Revuelta JM et al (2010) Mechanical properties of human coronary arteries. Conf Proc IEEE Eng Med Biol Soc 2010:3792–3795

    Google Scholar 

  11. Seebacher G, Grasl C, Stoiber M, Rieder E, Kasimir MT, Dunkler D et al (2008) Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif Organs 32:28–35

    Google Scholar 

  12. Petersen TH, Calle EA, Colehour MB, Niklason LE (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195:222–231

    Article  Google Scholar 

  13. Liao J, Yang L, Grashow J, Sacks MS (2005) Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater 1:45–54

    Article  Google Scholar 

  14. Kamenskiy AV, Dzenis YA, Kazmi SA, Pemberton MA, Pipinos, II, Phillips NY et al (2014) Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Biomech Model Mechanobiol

  15. Waldman SD, Lee JM (2005) Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues. Biomaterials 26:7504–7513

    Article  Google Scholar 

  16. Bergel DH (1961) The static elastic properties of the arterial wall. J Physiol 156:445–457

    Article  Google Scholar 

  17. Guo X, Kassab GS (2003) Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am J Physiol Heart Circ Physiol 285:H2614–H2622

    Article  Google Scholar 

  18. Solan A, Dahl SL, Niklason LE (2009) Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell Transplant 18:915–921

    Article  Google Scholar 

  19. Koniari I, Mavrilas D, Papadaki H, Karanikolas M, Mandellou M, Papalois A et al (2011) Structural and biomechanical alterations in rabbit thoracic aortas are associated with the progression of atherosclerosis. Lipids Health Dis 10:125

    Article  Google Scholar 

  20. Stewart SF, Lyman DJ (1990) Predicting the compliance of small diameter vascular grafts from uniaxial tensile tests. J Biomech 23:629–637

    Article  Google Scholar 

  21. Sarkar S, Hillery C, Seifalian A, Hamilton G (2006) Critical parameter of burst pressure measurement in development of bypass grafts is highly dependent on methodology used. J Vasc Surg 44:846–852

    Article  Google Scholar 

  22. de Valence S, Tille JC, Mugnai D, Mrowczynski W, Gurny R, Moller M et al (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33:38–47

    Article  Google Scholar 

  23. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28:351–362

    Article  Google Scholar 

  24. Shazly T, Rachev A, Lessner S, Argraves W, Ferdous J, Zhou B et al (2014) On the uniaxial ring test of tissue engineered constructs. Exp Mech 1–11

  25. Mulvany MJ, Halpern W (1976) Mechanical properties of vascular smooth muscle cells in situ. Nature 260:617–619

    Article  Google Scholar 

  26. Plass CA, Schmid W, Holy EW, Kreatschitsch U, Laggner H, Volf I (2007) Redox-sensitive impairment of porcine coronary artery vasodilation by hypochlorite-modified LDL. Atherosclerosis 190:330–337

    Article  Google Scholar 

  27. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32:1104–1115

    Article  Google Scholar 

  28. Bergmeister H, Schreiber C, Grasl C, Walter I, Plasenzotti R, Stoiber M et al (2012) Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater

  29. Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH (2009) An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J Biomech 42:2535–2539

    Article  Google Scholar 

  30. Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2:3–19

    Article  Google Scholar 

  31. Lee JM, Langdon SE (1996) Thickness measurement of soft tissue biomaterials: a comparison of five methods. J Biomech 29:829–832

    Article  Google Scholar 

  32. O’Leary SA, Doyle BJ, McGloughlin TM (2013) Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J Biomech 46:1955–1960

    Article  Google Scholar 

  33. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  Google Scholar 

  34. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC et al (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100:11201–11206

    Article  Google Scholar 

  35. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126:657–665

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Anneliese Steinacher-Niegisch, Birgitta Winter, and Eva Eichmair for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stoiber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoiber, M., Messner, B., Grasl, C. et al. A method for mechanical characterization of small blood vessels and vascular grafts. Exp Mech 55, 1591–1595 (2015). https://doi.org/10.1007/s11340-015-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0053-x

Keywords

Navigation