Skip to main content
Log in

Experiments on the Dynamics of Flexible Cylindrical Shells Impacting on a Water Surface

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This work presents a comprehensive set of experimental results on the water entry of compliant cylindrical shells. Free fall experiments are conducted on a flexible thin cylinder varying the drop height. The problem studied here is not representative of a free cylinder as this is hold by a sledge, which acts as a concentrated mass. The impact dynamics is analyzed from accelerometers, linear position sensors, and through the analysis of high speed images. Further, an experimental methodology based on the modal decomposition method is developed and utilized to reconstruct the overall structural deformation and the distributed strain field on the base of local strain measurements. Fiber Bragg gratings are utilized for this purpose. Results show that the flexibility of the structure plays an important role on the impact dynamics, which is found to completely differ from the impact of rigid structures. The overall deformation of the shell follows the first mode shape of vibration of a free ring, while the stresses are influenced by the superposition of the higher mode shapes that are excited during the impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Seddon C, Moatamedi M (2006) Review of water entry with applications to aerospace structures. Int J Impact Eng 32(7):1045–1067

    Article  Google Scholar 

  2. Garrison CJ (1996) Water impact loads on circular structural members. Appl Ocean Res 18(1):45–54

    Article  Google Scholar 

  3. Chu P, Gilles A, Fan C (2005) Experiment of falling cylinder through the water column. Exp Thermal Fluid Sci 29(5):555–568

    Article  Google Scholar 

  4. De Backer G, Vantorre M, Beels C, De Pré J, Victor S, De Rouck J, Blommaert C, Van Paepegem W (2009) Experimental investigation of water impact on axisymmetric bodies. Appl Ocean Res 31(3):143–156

    Article  Google Scholar 

  5. Lewis SG, Hudson DA, Turnock SR, Taunton DJ (2010) Impact of a free-falling wedge with water: synchronized visualization, pressure and acceleration measurements. Fluid Dyn Res 42(3):035509

    Article  Google Scholar 

  6. Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54(12):1630

    Article  Google Scholar 

  7. Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27:027103

    Article  Google Scholar 

  8. Das K, Batra RC (2011) Local water slamming impact on sandwich composite hulls. J Fluids Struct 27(4):523–551

    Article  Google Scholar 

  9. Maki KJ, Lee D, Troesch AW, Vlahopoulos N (2011) Hydroelastic impact of a wedge-shaped body. Ocean Eng 38(4):621–629

    Article  Google Scholar 

  10. Battley M, Allen T (2012) Servo-hydraulic system for controlled velocity water impact of marine sandwich panels. Exp Mech 52:95–106

    Article  Google Scholar 

  11. Panciroli R, Porfiri M (2014) Hydroelastic impact of piezoelectric structures. Int J Impact Eng 66:18–27

    Article  Google Scholar 

  12. Panciroli R, Porfiri M (2015) Analysis of hydroelastic slamming through particle image velocimetry. J Sound Vib 1–16, in press

  13. Hua C, Fang C, Cheng J (2011) Simulation of fluid-solid interaction on water ditching of an airplane by ALE method. J Hydrodyn Ser B 23(5):637–642

    Article  Google Scholar 

  14. Di Trapani C, Mastrella E, Zallo A, Pantanella G, Benedetti M, Calcagni M (2012) Explicit Fem simulation of Vega launch vehicle solid rocket motors sea impact and sinking. In: ECCM15—15th European conference on composite materials, Venice, Italy, June, pp 24–28

  15. Khabakhpasheva TI (2009) Fluid—structure interaction during the impact of a cylindrical shell on a thin layer of water. J Fluids Struct 25(3):431–444

    Article  Google Scholar 

  16. Tassin A, Piro DJ, Korobkin AA, Maki KJ, Cooker MJ (2013) Two-dimensional water entry and exit of a body whose shape varies in time. J Fluids Struct 40:317–336

    Article  Google Scholar 

  17. Degroote J, Souto-Iglesias A, Van Paepegem W, Annerel S, Bruggeman P, Vierendeels J (2010) Partitioned simulation of the interaction between an elastic structure and free surface flow. Comput Methods Appl Mech Eng 199(33–36):2085–2098

    Article  MATH  MathSciNet  Google Scholar 

  18. Shibue T, Ito A, Nakayama E (1994) Structural response analysis of cylinders under water impact. In: Proceedings of international conference on hydroelasticity in marine technology, Trondheim

  19. Arai M, Miyauchi T (1998) Numerical study of the impact of water on cylindrical shells, considering fluid structure interactions. In: Oosterveld MWC, Tan SG (eds) Practical design of ships and mobile units, vol 11. Elsevier Applied Science, London, New York, pp 59–68. Elsevier a edition

    Google Scholar 

  20. Van Nuffel D, Vepa KS, De Baere I, Lava P, Kersemans M, Degrieck J, De Rouck J, Van Paepegem W (2014) A comparison between the experimental and theoretical impact pressures acting on a horizontal quasi-rigid cylinder during vertical water entry. Ocean Eng 77(1):42–54

    Article  Google Scholar 

  21. Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222

    Article  Google Scholar 

  22. Panciroli R, Falcucci G, Erme G, De Santis E, Jannelli E (2015) Fluid-structure interaction during the water entry of flexible cylinders. AIP Conf Proc 1648:570011

    Article  Google Scholar 

  23. Faltinsen OM (2000) Hydroelastic slamming. J Mar Sci Technol 5(2):49–65

    Article  Google Scholar 

  24. Panciroli R (2012) Water entry of flexible wedges: some issues on the FSI phenomena. Appl Ocean Res 39:72–74

    Article  Google Scholar 

  25. Cui S, Kiat Cheong H, Hao H (1999) Experimental study of dynamic buckling of plates under fluid—solid slamming. Int J Impact Eng 22(7):675–691

    Article  Google Scholar 

  26. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans Ser A Math Phys Eng Sci 365(1851):303–15

    Article  Google Scholar 

  27. Kersey AD (1996) A review of recent developments in fiber optic sensor technology. Opt Fiber Technol 2(3):291–317

    Article  Google Scholar 

  28. Li H, Li D, Song G (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng Struct 26(11):1647–1657

    Article  MathSciNet  Google Scholar 

  29. Kim NS, Cho NS (2004) Estimating deflection of a simple beam model using fiber optic bragg-grating sensors. Exp Mech 44(4):433–439

    Article  Google Scholar 

  30. Sun L, Li H, Ren L, Jin Q (2007) Dynamic response measurement of offshore platform model by FBG sensors. Sens Actuators A: Phys 136(2):572–579

    Article  Google Scholar 

  31. Silva-Muñoz RA, Lopez-Anido RA (2009) Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors. Compos Struct 89(2):224–234

    Article  Google Scholar 

  32. Minakuchi S, Takeda N (2013) Recent advancement in optical fiber sensing for aerospace composite structures. Photon Sens 3(4):345–354

    Article  Google Scholar 

  33. Wang Y, Han B, Kim DW, Bar-Cohen A, Joseph P (2008) Integrated measurement technique for curing process-dependent mechanical properties of polymeric materials using fiber Bragg grating. Exp Mech 48:107–117

    Article  Google Scholar 

  34. Kahandawa GC, Epaarachchi J, Wang H, Lau KT (2012) Use of FBG sensors for SHM in aerospace structures. Photon Sens 2(3):203–214

    Article  Google Scholar 

  35. Kang L, Kim D, Han J (2007) Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J Sound Vib 305(3):534–542

    Article  Google Scholar 

  36. Chang SJ, Kim NS (2011) Estimation of displacement response from FBG strain sensors using empirical mode decomposition technique. Exp Mech 52(6):573–589

    Article  MathSciNet  Google Scholar 

  37. Sun H, Faltinsen OM (2006) Water impact of horizontal circular cylinders and cylindrical shells. Appl Ocean Res 28(5): 299–311

    Article  Google Scholar 

  38. Abrate S (2013) Hull slamming. Appl Mech Rev 64(6):060803

    Article  Google Scholar 

  39. Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56:1–17

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Research Project MISE-ICE-CRUI n. 55 2010. Views expressed herein are those of the authors and not of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Panciroli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 2.95 MB)

(AVI 3.87 MB)

(AVI 2.60 MB)

(AVI 4.36 MB)

(AVI 4.95 MB)

(AVI 3.85 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panciroli, R., Ubertini, S., Minak, G. et al. Experiments on the Dynamics of Flexible Cylindrical Shells Impacting on a Water Surface. Exp Mech 55, 1537–1550 (2015). https://doi.org/10.1007/s11340-015-0047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0047-8

Keywords

Navigation