Skip to main content

An Experimental Technique for the Dynamic Characterization of Soft Complex Materials


We describe an experimental technique to study the dynamic behavior of complex soft materials, based on high-speed microscopic imaging and direct measurements of dynamic forces and deformations. The setup includes high sensitivity dynamic displacement measurements based on geometric moiré interferometry and high-speed imaging for in-situ, full-field visualization of the complex micro-scale dynamic deformations. The method allows extracting dynamic stress-strain profiles both from the moiré interferometry and from the high-speed microscopic imaging. We discuss the advantages of using these two complementing components concurrently. We use this technique to study the dynamic response of vertically aligned carbon nanotube foams subjected to impact loadings at variable deformation rates. The same technique can be used to study other micro-structured materials and complex hierarchical structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lakes R (1993) Materials with structural hierarchy. Nature 36:511–515

    Article  Google Scholar 

  2. 2.

    Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–7. doi:10.1126/science.1116994

    Article  Google Scholar 

  3. 3.

    Ortiz C, Boyce M (2008) Bioinspired structural materials. Science 319:1053–1054. doi:10.1126/science.1154295

    Article  Google Scholar 

  4. 4.

    Lee J-H, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Adv Mater 24:4782–810. doi:10.1002/adma.201201644

    Article  Google Scholar 

  5. 5.

    Maldovan M, Ullal CK, Jang J-H, Thomas EL (2007) Sub-micrometer scale periodic porous cellular structures: Microframes Prepared by holographic interference lithography. Adv Mater 19:3809–3813. doi:10.1002/adma.200700811

    Article  Google Scholar 

  6. 6.

    Yuan Z-Y, Su B-L (2006) Insights into hierarchically meso—macroporous structured materials. J Mater Chem 16:663. doi:10.1039/b512304f

    Article  Google Scholar 

  7. 7.

    Shim J, Shan S, Košmrlj A et al (2013) Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials. Soft Matter 9:8198. doi:10.1039/c3sm51148k

    Article  Google Scholar 

  8. 8.

    Purslow PP, Wess TJ, Hukins DWL (1997) Collagen Orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J Exp Biol 201:135–142

    Google Scholar 

  9. 9.

    Lattanzi L, Raney JR, De Nardo L et al (2012) Nonlinear viscoelasticity of freestanding and polymer-anchored vertically aligned carbon nanotube foams. J Appl Phys 111:074314. doi:10.1063/1.3699184

    Article  Google Scholar 

  10. 10.

    Yao H-B, Fang H-Y, Wang X-H, Yu S-H (2011) Hierarchical assembly of micro-/nano-building blocks: Bio-inspired rigid structural functional materials. Chem Soc Rev 40:3764–85. doi:10.1039/c0cs00121j

    Article  Google Scholar 

  11. 11.

    Teo EHT, Yung WKP, Chua DHC, Tay BK (2007) A carbon nanomattress: A new nanosystem with intrinsic, tunable, damping properties. Adv Mater 19:2941–2945. doi:10.1002/adma.200700351

    Article  Google Scholar 

  12. 12.

    Daraio C, Nesterenko VF, Jin S et al (2006) Impact response by a foamlike forest of coiled carbon nanotubes. J Appl Phys 100:064309. doi:10.1063/1.2345609

    Article  Google Scholar 

  13. 13.

    Lee J-H, Veysset D, Singer JP et al (2012) High strain rate deformation of layered nanocomposites. Nat Commun 3:1164. doi:10.1038/ncomms2166

    Article  Google Scholar 

  14. 14.

    Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775. doi:10.1016/j.ijimpeng.2004.03.005

    Article  Google Scholar 

  15. 15.

    Ramesh KT (2008) Springer handbook of experimental solid mechanics: High rates and impact experiments. Springer, New York

    Google Scholar 

  16. 16.

    Espinosa HD, Nemat-Nasser S (2000) ASM Handbook: Low-velocity impact testing. 539–559, American Society for Metals

  17. 17.

    Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Springer, New York

    Google Scholar 

  18. 18.

    Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol 20(062001):17pp. doi:10.1088/0957-0233/20/6/062001

    Google Scholar 

  19. 19.

    Hild F, Roux S (2006) Digital image correlation: From displacement measurement to identification of elastic properties - a review. Strain 42(2):69–80. doi:10.1111/j.1475-1305.2006.00258.x

    Article  Google Scholar 

  20. 20.

    Guduru PR, Rosakis AJ, Ravichandran G (2001) Dynamic shear bands: An investigation using high speed optical and infrared diagnostics. J Mech Mater 33:371–402. doi:10.1016/S0167-6636(01)00051-5

    Article  Google Scholar 

  21. 21.

    Kajberg J, Sundin KG, Melin LG, Ståhle P (2004) High strain-rate tensile testing and viscoplastic parameter identification using microscopic high-speed photography. Int J Plast 20:561–575. doi:10.1016/S0749-6419(03)00041-X

    Article  MATH  Google Scholar 

  22. 22.

    Koerber H, Xavier J, Camanho PP (2010) High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. J Mech Mater 42(11):1004–1019. doi:10.1016/j.mechmat.2010.09.003

    Article  Google Scholar 

  23. 23.

    Hutchens SB, Hall LJ, Greer JR (2010) In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv Funct Mater 20:2338–2346. doi:10.1002/adfm.201000305

    Article  Google Scholar 

  24. 24.

    Professional Plastics,

  25. 25.

    Lu J, Suresh S, Ravichandran G (2003) Dynamic indentation for determining the strain rate sensitivity of metals. J Mech Phys Solids 51:1923–1938. doi:10.1016/j.jmps.2003.09.007

    Article  Google Scholar 

  26. 26.

    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  27. 27.

    Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51:2213–2237. doi:10.1016/j.jmps.2003.09.015

    Article  Google Scholar 

  28. 28.

    He LH, Fujisawa N, Swain MV (2006) Elastic modulus and stress-strain response of human enamel by nano-indentation. Biomaterials 27:4388–98. doi:10.1016/j.biomaterials.2006.03.045

    Article  Google Scholar 

  29. 29.

    Hay J (2009) Introduction to instrumented indentation testing. Exp Tech 33:66–72. doi:10.1111/j.1747-1567.2009.00541.x

    Article  Google Scholar 

  30. 30.

    Subhash G, Koeppel BJ, Chandra A (1999) Dynamic indentation hardness and rate sensitivity in metals. J Eng Mater Technol 121(3):257–263. doi:10.1115/1.2812373

    Article  Google Scholar 

  31. 31.

    Misra A, Raney JR, De Nardo L, Craig AE, Daraio C (2011) Synthesis and characterization of carbon nanotube - polymer multilayer structures. 5(10):7713–21. doi: 10.1021/nn202262j

  32. 32.

    PCB Piezotronics,

  33. 33.

    PCB Piezotronics,

  34. 34.

    Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar (SHPB). J Mech Phys Solids 11(3):155–179. doi:10.1016/0022-5096(63)90050-4

    Article  Google Scholar 

  35. 35.

    Song B, Chen W (2004) Dynamic stress equilibration in split hopkinson pressure bar tests on soft materials. Exp Mech 44:300–312. doi:10.1177/0014485104041543

    Article  Google Scholar 

  36. 36.

    Post D, Han B, Ifju P (1994) High sensitivity moiré: Experimental analysis for mechanics and materials. Springer, New York

    Book  Google Scholar 

  37. 37.

    Patorski K (1993) Handbook of the moiré fringe technique. Elsvier, New York

    Google Scholar 

  38. 38.

    Cloud G (1998) Optical methods for engineering analysis. Cambridge University Press, Cambridge

    Google Scholar 

  39. 39.

    Walker CA (1994) A historical review of moiré interferometry. Exp Mech 34(4):281–299. doi:10.1007/BF02325143

    Article  Google Scholar 

  40. 40.

    Raney JR, Misra A, Daraio C (2011) Tailoring the microstructure and mechanical properties of arrays of aligned multiwall carbon nanotubes by utilizing different hydrogen concentrations during synthesis. Carbon 49:3631–3638. doi:10.1016/j.carbon.2011.04.066

    Article  Google Scholar 

  41. 41.

    Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310. doi:10.1126/science.1118957

    Article  Google Scholar 

  42. 42.

    Suhr J, Victor P, Ci L et al (2007) Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat Nanotechnol 2:417–21. doi:10.1038/nnano.2007.186

    Article  Google Scholar 

  43. 43.

    Misra A, Raney JR, De Nardo L, Craig AE, Daraio C (2011) Synthesis and characterization of carbon nanotube -polymer multilayer structures. ACS Nano 5:7713–21. doi:10.1021/nn202262j

    Article  Google Scholar 

Download references


We thank Prof. G. Ravichandran (California Institute of Technology) and Prof. M. Mello (Georgia Institute of Technology) for their useful suggestions. We acknowledge financial support from the Institute for Collaborative Biotechnologies (ICB) under the contract W911NF-09-D-0001 with the Army Research Office (ARO).

Author information



Corresponding author

Correspondence to C. Daraio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thevamaran, R., Daraio, C. An Experimental Technique for the Dynamic Characterization of Soft Complex Materials. Exp Mech 54, 1319–1328 (2014).

Download citation


  • Complex materials
  • Hierarchical materials
  • Impact testing
  • Geometric moiré
  • High-speed microscopic imaging