Skip to main content
Log in

Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an experimental device developed to detect and estimate dissipated energy during very high cycle fatigue tests (VHCF) at high loading frequency (20 kHz) and low stress (i.e. far below the yield stress). Intrinsic dissipation is computed using local expressions of the heat diffusion equation and thermal data fields provided by an infrared focal plane array camera. The results obtained from tests performed on pure copper specimens show that dissipated energy exists whatever the attainable stress range and show that the dissipated energy rate is not constant throughout the test. Both findings are respectively incompatible with the concepts of fatigue limit based on elastic shakedown or on stabilized cyclic state associated with the mechanical hysteresis loop (viscoplastic shakedown).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bathias C (1999) There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct 22(7):559–565

    Article  Google Scholar 

  2. Pyttel B, Schwerdt D, Berger C (2011) Very high cycle fatigue—Is there a fatigue limit? Int J Fatigue 33(1):49–58

    Article  Google Scholar 

  3. Bathias C, Drouillac L, Le François P (2001) How and why the fatigue S-N curve does not approach a horizontal asymptote. Int J Fatigue 23(1):143–151

    Article  Google Scholar 

  4. Stanzl-Tschegg S (2013) Very high cycle fatigue measuring techniques. Int J Fatigue. doi:10.1016/j.ijfatigue.2012.11.016

    Google Scholar 

  5. Ebara R (2006) The present situation and future problems in ultrasonic fatigue testing - Mainly reviewed on environmental effects and materials’ screening. Int J Fatigue 28(11):1465–1470

    Article  MATH  Google Scholar 

  6. Laird HM (1995) Frequency effects on cyclic plastic strain of polycrystalline copper under variable loading. Mater Sci Eng A 194(2):137–145

    Article  Google Scholar 

  7. Morrissey RJ, Golden PJ (2007) Fatigue strength of a single crystal in the gigacycle regime. Int J Fatigue 29(9–11):2079–2084

    Article  MATH  Google Scholar 

  8. Morrissey RJ, McDowell DL, Nicholas T (1999) Frequency and stress ratio effects in high cycle fatigue of Ti-6Al-4V. Int J Fatigue 21(7):679–685

    Article  Google Scholar 

  9. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34

    Article  Google Scholar 

  10. Ozaltun H, Shen M-H, George T, Cross C (2011) An energy based fatigue life prediction framework for in-service structural components. Exp Mech 51(5):707–718

    Article  Google Scholar 

  11. Kim J, Jeong H-Y (2010) A study on the hysteresis, surface temperature change and fatigue life of SM490A, SM490A-weld and FC250 metal materials. Int J Fatigue 32(7):1159–1166

    Article  Google Scholar 

  12. Li H, Nishimura A, Nagasaka T, Muroga T (2007) Fatigue life and cyclic softening behavior of JLF-1 steel. Fusion Eng Des 82(15–24):2595–2600

    Article  Google Scholar 

  13. Amiri M, Khonsari M (2010) Rapid determination of fatigue failure based on temperature evolution: fully reversed bending load. Int J Fatigue 32(2):382–389

    Article  Google Scholar 

  14. Doudard C, Calloch S, Cugy P, Galtier A, Hild F (2005) A probabilistic two-scale model for high cycle fatigue life predictions. Fatigue Fract Eng Mater Struct 28:279–288

    Article  Google Scholar 

  15. Ezanno A, Doudard C, Calloch S, Millot T, Heuzé J-L (2010) Fast characterization of high-cycle fatigue properties of a cast copper-aluminum alloy by self-heating measurements under cyclic loadings. Procedia Eng 2(1):967–976

    Article  Google Scholar 

  16. Krapez J-C, Pacou D (2002) Thermography detection of early thermal effects during fatigue tests of steel and aluminum samples. Am Inst Phys Conf Proc 615(1):1545–1552

    Google Scholar 

  17. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22(1):65–73

    Article  Google Scholar 

  18. Le Saux V, Marco Y, Calloch S, Doudard C, Charrier P (2010) An energetic criterion for the fatigue of rubbers: an approach based on a heat build-up protocol and μ-tomography measurements. Procedia Eng 2(1):949–958

    Google Scholar 

  19. Poncelet M, Doudard C, Calloch S, Weber B, Hild F (2010) Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue. J Mech Phys Solids 58:578–593

    Article  Google Scholar 

  20. Luong MP (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater 28(1–4):155–163

    Article  Google Scholar 

  21. Luong MP (1995) Infrared thermographic scanning of fatigue in metals. Nucl Eng Des 158(2–3):363–376

    Article  Google Scholar 

  22. Galtier A, Bouaziz O, Lambert A (2002) Influence de la microstructure des aciers sur leur propriétés. Méc Ind 3(5):457–462

    Google Scholar 

  23. Mason W (1950) Piezoelectric crystals and their application to ultrasonics. Van Nostrand, New York

    Google Scholar 

  24. Bathias C (2006) Piezoelectric fatigue testing machines and devices. Int J Fatigue 28(11):1438–1445

    Article  MATH  Google Scholar 

  25. Bathias C, Paris P, Dekker M (eds) (2004) Gigacycle fatigue in mechanical practice. CRC Press, Boca Ranton

    Google Scholar 

  26. Papadopoulos IV, Panoskaltsis VP (1996) Invariant formulation of a gradient dependant multiaxial high-cycle fatigue criterion. Eng Fract Mech 55(4):513–528

    Article  Google Scholar 

  27. Stanzl-Tschegg S, Mughrabi H, Schoenbauer B (2007) Life time and cyclic slip of copper in the VHCF regime. Int J Fatigue 29(9–11):2050–2059

    Article  MATH  Google Scholar 

  28. Phung NL (2012) Fatigue sous très faibles amplitudes de contrainte : Analyse des mécanismes précurseurs de l’amorçage de fissure dans le cuivre polycristallin. PhD Thesis, ENSAM Paris

  29. Honorat V, Moreau S, Muracciole J, Wattrisse B, Chrysochoos A (2005) Calorimetric analysis of polymer behaviour using a pixel calibration of an IRFPA camera. Quant InfraRed Thermography J 2:153–171

    Article  Google Scholar 

  30. Germain P, Nguyen QS, Suquet P (1983) Continuum Thermomechanics. J Appl Mech Trans ASME 50(4B):1010–1020

    Article  MATH  Google Scholar 

  31. Berthel B, Chrysochoos A, Wattrisse B, Galtier A (2008) Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp Mech 48:79–90

    Article  Google Scholar 

  32. Boulanger T, Chrysochoos A, Mabru C, Galtier A (2004) Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue 26(3):221–229

    Article  Google Scholar 

  33. Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci 38(16):1759–1788

    Article  Google Scholar 

  34. Mareau C, Favier V, Weber B, Galtier A (2009) Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading. Int J Fatigue 31(8–9):1407–1412

    Article  Google Scholar 

  35. Doudard C, Calloch S, Hild F, Roux S (2010) Identification of heat source fields from infra-red thermography: determination of ‘self-heating’ in a dual-phase steel by using a dog bone sample. Mech Mater 42:55–62

    Article  Google Scholar 

  36. Wang C, Blanche A, Wagner D, Chrysochoos A, Bathias C (2014) Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron. Int J Fatigue 58:152–157

    Article  Google Scholar 

  37. Chrysochoos A, Huon V, Jourdan F, Muracciole J-M, Peyroux R, Wattrisse B (2010) Use of full-field digital image correlation and infrared thermography measurements for the thermomechanical analysis of material behaviour. Strain 46(1):117–130

    Article  Google Scholar 

  38. Connesson N, Maquin F, Pierron F (2011) Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600. Acta Mater 59(10):4100–4115

    Article  Google Scholar 

  39. Berthel B, Wattrisse B, Chrysochoos A, Galtier A (2007) Thermographic analysis of fatigue dissipation properties of steel sheets. Strain 43(3):273–279

    Article  Google Scholar 

  40. Morabito A, Chrysochoos A, Dattoma V, Galietti U (2007) Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. Int J Fatigue 29(5):977–984

    Article  Google Scholar 

  41. Mareau C, Favier V, Weber B, Galtier A, Berveiller M (2012) Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading. Int J Plast 32–33:106–120

    Article  Google Scholar 

  42. Munier R (2012) Etude de la fatigue des aciers laminés à partir de l’auto-échauffement sous sollicitation cyclique: Essais, observations, modélisation et influence d’une pré-déformation plastique. PhD thesis, Université de Bretagne Occidentale

Download references

Acknowledgments

The authors wish to thank the Agence Nationale de la Recherche France ANR-09-BLAN-0025-01 for its financial support in the framework of the ANR project DISFAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blanche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanche, A., Chrysochoos, A., Ranc, N. et al. Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests. Exp Mech 55, 699–709 (2015). https://doi.org/10.1007/s11340-014-9857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9857-3

Keywords

Navigation