Skip to main content
Log in

Identification of Self-Heating Phenomena Under Cyclic Loadings Using Full-Field Thermal and Kinematic Measurements: Application to High-Cycle Fatigue of Seam Weld Joints

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this work is to extend the use of full field measurements (kinematical and thermal) to the identification of the high cycle fatigue properties of seam weld joints. A self-heating test under cyclic loading is carried out on a seam weld joint. During the test, displacement and temperature fields of the specimen are measured by Stereo Digital Image Correlation (SDIC) and Infra-red (IR), respectively. Then a suitable numerical strategy is proposed to identify a given thermal source model. Thus, a correlation between the change of the seam weld dissipative source and the expected mean fatigue strength of the assembly is successfully recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Stromeyer CE (1914) The determination of fatigue limits under alternating stress conditions. Proc Roy Soc London 90:411–425

    Article  Google Scholar 

  2. Moore HF, Kommers JB (1921) Fatigue of metals under repeated stress. Chem Metall Eng 25:1141–1144

    Google Scholar 

  3. Luong MP (1995) Infrared thermographic scanning of fatigue in metals. Nucl Eng Des 158:363–376

    Article  Google Scholar 

  4. Luong MP (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater 28:155–163

    Article  Google Scholar 

  5. Bérard JY, Rathery S, Béranger AS (1998) Détérmination de la limite d’endurance des matériaux par thermographie infrarouge. Matériaux et Tech 1-2:55–57

    Google Scholar 

  6. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22:65–73

    Article  Google Scholar 

  7. Liaw PK, Wang H, Jiang L, Yang B, Huang JY, Kuo RC, Huang JC (2000) Thermographic detection of fatigue damage of pressure vessel at 1 Hz and 20 Hz. Scr Mater 42(4):389–395

    Article  Google Scholar 

  8. Galtier A, Bouaziz O, Lambert A (2002) Influence de la Microstructure Des Aciers sur leurs Propriétés Mécaniques. Méc Ind 3(5):457–462

    Google Scholar 

  9. Doudard C (2004) Détermination rapide des propriétés en fatigue à grand nombre de cycles à partir d’essais d’auto-échauffement, PhD ENS Cachan

  10. Doudard C, Calloch S, Cugy P, Galtier A, Hild F (2005) A probabilistic two-scale model for high-cycle fatigue life predictions. Fat Fract Eng Mat Struct 28:279–288

    Article  Google Scholar 

  11. Cura F, Curti G, Sesana R (2005) A new iteration method for the thermographic determination of fatigue limit in steels. Int J Fatigue 27(4):453–459

    Article  Google Scholar 

  12. Doudard C, Poncelet M, Calloch S, Boue C, Hild F, Galtier A (2007) Determination of an hcf criterion by thermal measurements under biaxial cyclic loading. Int J Fatigue 29(4):748–757

    Article  Google Scholar 

  13. Doudard C, Calloch S, Hild F, Cugy P, Galtier A (2004) Identification of the scatter in high cycle fatigue from temperature measurements. C R Mcanique 332(10):795–801

    Article  Google Scholar 

  14. Guglielmino E, La Rosa G, Olivieri SM, La Pasta A (1993) Analisi mediante techniche termografiche del comportamento a fatica di giunti di testa con saldatura laser. In: Proceedings of the XXII AIAS congress. Forli, pp 301–307

  15. Crupi V, Guglielmino E, Maestro M, Marino A (2009) Fatigue analysis of butt welded AH36 steel joints: thermographic method and design SN curve. Mar Struct 22:373–386

    Article  Google Scholar 

  16. Crupi V, Chiofalo G, Guglielmino E (2010) Using infrared thermography in low-cycle fatigue studies of welded joints. Weld J 89:195–200

    Google Scholar 

  17. Clienti C, La Rosa G, Risitano A, D’Andrea R (2012) personal communication

  18. Meola C, Carlomagno GM, Squillace A, Giorleo G (2004) The use of infrared thermography for nondestructive evaluation of joints. Infrared Phys Technol 46:93–99

    Article  Google Scholar 

  19. Ummenhofer T, Medgenberg J (2009) On the use of infrared thermography for the analysis of fatigue damage processes in welded joints. Int J Fatigue 31:130–137

    Article  Google Scholar 

  20. Doudard C, Calloch S (2009) Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude. Eur J Mech A/Solids 28(2):233–240

    Article  MATH  Google Scholar 

  21. Poncelet M, Doudard C, Calloch S, Weber B, Hild F (2010) Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue. J Mech Phys Solids 58(4):578–593

    Article  Google Scholar 

  22. Munier R (2012) Etude de la fatigue des aciers laminés à partir de l’auto-échauffement sous sollicitation cyclique: essais, observations, modélisation et influence d’une prédeformation plastique. PhD UBO Brest

  23. Ezanno A (2011) Caractérisation rapide des propriétés à la fatigue grand nombre de cycles des matériaux de fonderie à partir d’essais d’auto-échauffement: application aux alliages d’hélices marines, PhD UBO Brest

  24. Ezanno A, Doudard C, Calloch S, Heuz J-L (2013) A new approach to characterizing and modeling the high cycle fatigue properties of cast materials based on self-heating measurements under cyclic loadings. Int J Fatigue 47:232–243

    Article  Google Scholar 

  25. Munier R, Doudard C, Calloch S, Weber B, Facchinetti M (2011) Contribution of kinematical and thermal full-field measurements for mechanical properties identification: application to high cycle fatigue of steels. Exp Mech online

  26. Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Advances in two-dimensional and three-dimensional computer vision. In: Rastogi PK (ed)Photomechanics. Topics in Applied Physics, vol 77. Springer, Berlin, pp 323–372

    Google Scholar 

  27. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    Google Scholar 

  28. Poncelet M (2007) Multiaxialité, hétérogénéités intrinsèques et structurales des essais d’auto-échauffement et de fatigue à grand nombre de cycles. PhD ENS Cachan

  29. Poncelet M, Doudard C, Calloch S, Hild F, Weber B (2010) Dissipation measurements in steel sheets under cyclic loading by use of infrared microthermography. Strain 46:101–116

    Article  Google Scholar 

  30. Hardwood N, Cummings WM (1991) Thermoelastic stress analysis. Institute of Physics Publishing, Philadelphia

    Google Scholar 

  31. Boulanger T, Chrysochoos A, Mabru C, Galtier A (2004) Calorimetric and thermoelastic effects associated with the fatigue behavior of steels. Int J Fatigue 26:221–229

    Article  Google Scholar 

  32. Chrysochoos A, Louche H (2000) Infrared image processing to analyze the calorific effects accompanying strain localization. Int J Eng Sci 38(16):1759–1788

    Article  Google Scholar 

  33. Boulanger T (2004) Analyse par thermographie infrarouge des sources de chaleur induites par la fatigue des aciers. PhD Université Montpellier II

  34. Berthel B (2007) Mesures thermographiques de champs de dissipation accompagnant la fatigue grand nombre de cycles des aciers. PhD Université Montpellier II

  35. Morabito AE, Chrysochoos A, Dattoma V, Gallietti U (2007) Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. Int J Fatigue 29(5):977–984

    Article  Google Scholar 

  36. Berthel B, Chrysochoos A, Wattrisse B, Galtier A (2008) Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp Mech 48(1):79–90

    Article  Google Scholar 

  37. Connesson N, Maquin F, Pierron F (2010) Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Exp Mech online

  38. Doudard C, Calloch S, Hild F, Roux S (2010) Identification of heat source fields from infra-red thermography: determination of ‘self-heating’ in a dual-phase steel by using a dog bone sample. Mech Mater 42(1):55–62

    Article  Google Scholar 

  39. Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. ASME J Appl Mech 50:1010–1020

    Article  MATH  Google Scholar 

  40. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  41. Delpueyo D, Grediac M, Balandraud X, Badulescu C (2012) Investigation of martensitic microstructures in a monocrystalline Cu-Al-Be shape memory alloy with the grid method and infrared thermography. Mech Mater 45:34–51

    Article  Google Scholar 

  42. Li XD, Zhang H, Wu DL, Liu X, Liu JY (2012) Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress. Int J Fatigue 36:18–23

    Article  Google Scholar 

Download references

Acknowledgments

M. Bastien Weber and M. Michel Duchet from ArcelorMittal Maizières Research & Development are kindly acknowledged for providing all the specimens and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Doudard.

Additional information

PSA Peugeot Citroën is acknowledged for sponsoring this work through the StelLAB program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchinetti, M., Florin, P., Doudard, C. et al. Identification of Self-Heating Phenomena Under Cyclic Loadings Using Full-Field Thermal and Kinematic Measurements: Application to High-Cycle Fatigue of Seam Weld Joints. Exp Mech 55, 681–698 (2015). https://doi.org/10.1007/s11340-013-9835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9835-1

Keywords

Navigation