Skip to main content
Log in

Dual-Configuration Fiber Bragg Grating Sensor Technique to Measure Coefficients of Thermal Expansion and Hygroscopic Swelling

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We propose a method based on the dual-configuration fiber Bragg grating (FBG) sensor to measure the coefficients of thermal expansion (CTE) and hygroscopic swelling (CHS) of polymeric materials. The Bragg wavelength shifts are documented in “two” small but different polymer-FBG assemblies while they are subjected to environmental loading conditions (temperature or moisture). The behavior of the infinite polymer/FBG assembly is reconstructed numerically from the data obtained from the two configurations. The coefficients, then, can be determined from the simple governing equation derived for the infinite assembly. The proposed method is implemented for an underfill material. The validity of measurements is corroborated by a commercially available tool, and the repeatability of measurements is verified by an experiment with a different configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Darveaux R, Turlik I, Hwang LT, Reisman A (1989) Thermal stress analysis of a multichip package design. Components Hybrids Manuf Technol IEEE Trans 12:663–672

    Article  Google Scholar 

  2. Sham ML, Kim JK (2005) Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. J Appl Polym Sci 96:175–182

    Article  Google Scholar 

  3. Shen YL, Needleman A, Suresh S (1994) Coefficients of thermal expansion of metal-matrix composites for electronic packaging. Metall and Mater Trans A 25:839–850

    Article  Google Scholar 

  4. Han B, Chopra M, Park S, Li L, Verma K (1996) Effect of substrate CTE on solder ball reliability of flip chip PBGA package assembly. J Surf Mount Technol 9:43–52

    Google Scholar 

  5. Wong E, Chan K, Rajoo R, Lim T (2000) The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging. In Proceedings of 50th Electronic Components and Technology Conference, pp. 576–580

  6. Shirangi M, Michel B (2010) Mechanism of moisture diffusion, hygroscopic swelling, and adhesion degradation in epoxy molding compounds. In: Fan X, Suhir E (eds) Moisture Sensitivity Plastic Packages IC Devices. Springer, US

  7. Ma X, Jansen K, Zhang G, Ernst L (2006) Hygroscopic effects on swelling and viscoelasticity of electronic packaging epoxy. In Proceedings of 7th International Conference on Electronic Packaging Technology, ICEPT'06, pp. 1–5

  8. Stellrecht E, Han B, Pecht MG (2004) Characterization of hygroscopic swelling behavior of mold compounds and plastic packages. Components Packag Technol IEEE Trans 27:499–506

    Article  Google Scholar 

  9. Stellrecht E, Han B, Pecht M (2003) Measurement of the hygroscopic swelling coefficient in mold compounds using moiré interferometry. Exp Tech 27:40–44

    Article  Google Scholar 

  10. Yoon S, Jang C, Han B (2008) Nonlinear stress modeling scheme to analyze semiconductor packages subjected to combined thermal and hygroscopic loading. J Electron Packag 130:024502

    Article  Google Scholar 

  11. Ardebili H, Wong EH, Pecht M (2003) Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging. Components Packag Technol IEEE Trans 26:206–214

    Article  Google Scholar 

  12. Jewell JM (1991) Thermooptic coefficients of some standard reference material glasses. J Am Ceram Soc 74:1689–1691

    Article  Google Scholar 

  13. Yazdi MH, Lee-Sullivan P (2009) Determination of dual glass transition temperatures of a PC/ABS blend using two TMA modes. J Therm Anal Calorim 96:7–14

    Article  Google Scholar 

  14. Hsiao SH, Chen YJ (2002) Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur Polymer J 38:815–828

    Article  Google Scholar 

  15. Han B, Guo Y (1996) Determination of an effective coefficient of thermal expansion of electronic packaging components: a whole-field approach. Components Packag Manuf Technol A IEEE Trans 19:240–247

    Article  Google Scholar 

  16. Han B (1998) Recent advancements of moiré and microscopic moiré interferometry for thermal deformation analyses of microelectronics devices. Exp Mech 38:278–288

    Google Scholar 

  17. Jang C, Yoon S, Han B (2010) Measurement of the hygroscopic swelling coefficient of thin film polymers used in semiconductor packaging. Components Packag Technol IEEE Trans 33:340–346

    Article  Google Scholar 

  18. Wang Y, Han B, Kim D, Bar-Cohen A, Joseph P (2008) Integrated measurement technique for curing process-dependent mechanical properties of polymeric materials using fiber bragg grating. Exp Mech 48:107–117

    Article  Google Scholar 

  19. Tanaka N, Okabe Y, Takeda N (2003) Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates. Smart Mater Struct 12:940

    Article  Google Scholar 

  20. Mulle M, Zitoune R, Collombet F, Olivier P, Grunevald Y-H (2007) Thermal expansion of carbon–epoxy laminates measured with embedded FBGS–Comparison with other experimental techniques and numerical simulation. Compos A: Appl Sci Manuf 38:1414–1424

    Article  Google Scholar 

  21. Yu-Lung L, Han-Sheng C (1998) Measurement of thermal expansion coefficients using an in-fibre Bragg-grating sensor. Meas Sci Technol 9:1543

    Article  Google Scholar 

  22. David NA, Wild PM, Djilali N (2012) Parametric study of a polymer-coated fibre-optic humidity sensor. Meas Sci Technol 23:035103

    Article  Google Scholar 

  23. Yeo T, Eckstein D, McKinley B, Boswell L, Sun T, Grattan K (2006) Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete. Smart Mater Struct 15:N40

    Article  Google Scholar 

  24. Harsch M, Karger-Kocsis J, Herzog F (2008) Monitoring of cure–induced strain of an epoxy resin by fiber Bragg grating sensor. J Appl Polym Sci 107:719–725

    Article  Google Scholar 

  25. Kim H-I, Yoon J-S, Kim H-B, Han J-H (2010) Measurement of the thermal expansion of space structures using fiber Bragg grating sensors and displacement measuring interferometers. Meas Sci Technol 21:085704

    Article  Google Scholar 

  26. Murukeshan V, Chan P, Ong L, Seah L (2000) Cure monitoring of smart composites using fiber Bragg grating based embedded sensors. Sensors Actuators A Phys 79:153–161

    Article  Google Scholar 

  27. Karalekas D, Cugnoni J, Botsis J (2008) Monitoring of process induced strains in a single fibre composite using FBG sensor: a methodological study. Compos A: Appl Sci Manuf 39:1118–1127

    Article  Google Scholar 

  28. Lai M, Botsis J, Cugnoni J, Coric D (2012) An experimental–numerical study of moisture absorption in an epoxy. Compos A: Appl Sci Manuf 43:1053–1060

    Article  Google Scholar 

  29. Wang Y, Woodworth L, Han B (2011) Simultaneous measurement of effective chemical shrinkage and modulus evolutions during polymerization. Exp Mech 51:1155–1169

    Article  Google Scholar 

  30. Kim KJ, Bar-Cohen A, Han B (2007) Thermo-optical modeling of polymer fiber Bragg grating illuminated by light emitting diode. Int J Heat Mass Transf 50:5241–5248

    Article  MATH  Google Scholar 

  31. Tao X, Tang L, Du W, Choy C (2000) Internal strain measurement by fiber Bragg grating sensors in textile composites. Compos Sci Technol 60:657–669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, Y., Kim, Y. et al. Dual-Configuration Fiber Bragg Grating Sensor Technique to Measure Coefficients of Thermal Expansion and Hygroscopic Swelling. Exp Mech 54, 593–603 (2014). https://doi.org/10.1007/s11340-013-9804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-013-9804-8

Keywords

Navigation