Experimental Mechanics

, Volume 53, Issue 7, pp 1201–1211 | Cite as

Finite Element Simulation of Hot Nanoindentation in Vacuum



A finite element model is developed to investigate technical issues associated with hot nanoindentation measurements in vacuum, e.g. thermal expansion-induced drift and temperature variations at the contact region between the cold indenter tip and hot specimen. With heat conduction properly accounted for, the model is able to reasonably reproduce experimental indentation measurements on fused silica and copper—two materials with significantly different thermal and mechanical properties—at several temperatures. Temperature and loading rate effects on thermal drift are established using this model and an analytical expression for predicting thermal drift is numerically calibrated. The model also captures details of the indentation process that are not directly accessible experimentally, and reaffirms the need for operational refinements in order to acquire high temperature indentation data of high quality, especially in a vacuum environment. Such information can guide experiments aimed at understanding thermally-activated phenomena in materials.


FEM High temperature nanoindentation Thermal drift Nanomechanical properties measurement 


  1. 1.
    Smith JF, Zheng S (2000) High temperature nanoscale mechanical property measurements. Sur Eng 16:143–146. doi:10.1179/026708400101517044 CrossRefGoogle Scholar
  2. 2.
    Wolf B, Bambauer KO, Paufler P (2001) On the temperature dependence of the hardness of quasicrystals. Mater Sci Eng, A 298:284–295. doi:10.1016/S0921-5093(00)01287-9 CrossRefGoogle Scholar
  3. 3.
    Kramer DE, Yoder KB, Gerberich WW (2001) Surface constrained plasticity: oxide rupture and the yield point process. Philos Mag A 81:2033–2058. doi:10.1080/01418610108216651 CrossRefGoogle Scholar
  4. 4.
    Kraft O, Saxa D, Haag M, Wanner A (2001) The effect of temperature and strain rate on the hardness of Al and Al-based foams as measured by nanoindentation. Z Metallkd 92:1068–1073Google Scholar
  5. 5.
    Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179–2186. doi:10.1080/01418610210134387 CrossRefGoogle Scholar
  6. 6.
    Beake BD, Goodes SR, Smith JF (2003) Nanoscale materials testing under industrially relevant conditions: high-temperature nanoindentation testing. Z Metallkd 94:798–801Google Scholar
  7. 7.
    Xia J, Li CX, Dong H (2003) Hot-stage nano-characterizations of an iron aluminide. Mater Sci Eng, A 354:112–120. doi:10.1016/S0921-5093(02)00902-4 CrossRefGoogle Scholar
  8. 8.
    Volinsky AA, Moody NR, Gerberich WW (2004) Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J Mater Res 19:2650–1657. doi:10.1557/JMR.2004.0331 CrossRefGoogle Scholar
  9. 9.
    Hinz M, Kleiner A, Hild S, Marti O, Gotsmann, Durig B, Drechsler U, Albrecht TR, Vettiger P (2004) Temperature dependent nano indentation of thin polymer films with the scanning force microscope. Eur Polym J 40:957–964. doi:10.1016/j.eurpolymj.2004.01.027 CrossRefGoogle Scholar
  10. 10.
    Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21:725–736. doi:10.1557/JMR.2006.0080 CrossRefGoogle Scholar
  11. 11.
    Trenkle JC, Packard CE, Schuh CA (2010) Hot nanoindentation in inert environments. Rev Sci Inst 81:073901. doi:10.1063/1.3436633 CrossRefGoogle Scholar
  12. 12.
    Franke O, Trenkle JC, Schuh CA (2010) Temperature dependence of the indentation size effect. J Mater Res 25:1225–1229. doi:10.1557/JMR.2010.0159 CrossRefGoogle Scholar
  13. 13.
    Rajulapati KV, Biener MM, Biener J, Hodge AM (2010) Temperature dependence of the plastic flow behavior of tantalum. Philos Mag Lett 90:35–42. doi:10.1080/09500830903356893 CrossRefGoogle Scholar
  14. 14.
    Suzuki T, Ohmura T (1996) Ultra-microindentation of silicon at elevated temperatures. Philos Mag A 74:1073–1084. doi:10.1080/01418619608239708 CrossRefGoogle Scholar
  15. 15.
    Syed-Asif SA, Pethica JB (1997) Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos Mag A 76:1105–1118. doi:10.1080/01418619708214217 CrossRefGoogle Scholar
  16. 16.
    Lund AC, Hodge AM, Schuh CA (2004) Incipient plasticity during nanoindentation at elevated temperatures. App Phys Lett 85:1362–1364. doi:10.1063/1.1784891 CrossRefGoogle Scholar
  17. 17.
    Nieh TG, Iwamoto C, Ikuhara Y, Lee KW, Chung YW (2004) Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12:1183–1189. doi:10.1016/j.intermet.2004.04.011 CrossRefGoogle Scholar
  18. 18.
    Schuh CA, Mason JK, Lund AC (2005) Quantitative insight into dislocation nucleation from high temperature nanoindentation experiments. Nat Mater 4:617–621. doi:10.1038/nmat1429 CrossRefGoogle Scholar
  19. 19.
    Packard CE, Schroers J, Schuh CA (2006) In situ measurements of surface tension-driven shape recovery in metallic glass. Scr Mater 60:1145. doi:10.1016/j.scriptamat.2009.02.056 CrossRefGoogle Scholar
  20. 20.
    Sawant A, Tin S (2008) High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy. Scr Mater 58:275–278. doi:10.1016/j.scriptamat.2007.10.013 CrossRefGoogle Scholar
  21. 21.
    Trelewicz JR, Schuh CA (2009) Hot nanoindentation of nanocrystalline Ni-W alloys. Scr Mater 61:1056–1059. doi:10.1016/j.scriptamat.2009.08.026 CrossRefGoogle Scholar
  22. 22.
    Bahr DF, Wilson DE, Crowson DA (1999) Energy considerations regarding yield points during indentation. J Mater Res 14:2269–2275. doi:10.1557/JMR.1999.0303 CrossRefGoogle Scholar
  23. 23.
    Schuh CA, Lund AC (2004) Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J Mater Res 19:2152–2158. doi:10.1557/JMR.2004.0276 CrossRefGoogle Scholar
  24. 24.
    Mason JK, Lund AC, Schuh CA (2006) Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys Rev B 73:054102. doi:10.1103/PhysRevB.73.054102 CrossRefGoogle Scholar
  25. 25.
    Schuh CA, Lund AC, Nieh TG (2004) New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater 52:5879–5891. doi:10.1016/j.actamat.2004.09.005 CrossRefGoogle Scholar
  26. 26.
    Packard CE, Schuh CA (2007) Initiation of shear bands near a stress concentration in metallic glass. Acta Mater 55:5348–5358. doi:10.1016/j.actamat.2007.05.054 CrossRefGoogle Scholar
  27. 27.
    Jang JI, Lance MJ, Wen SQ, Tsui TY, Pharr GM (2005) Indentation-induced phase transformation in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater 53:1759–1770. doi:10.1016/j.actamat.2004.12.025 CrossRefGoogle Scholar
  28. 28.
    Ma XG, Komvopoulos K (2005) In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films. J Mater Res 20:1808–1813. doi:10.1557/JMR.2005.0026 CrossRefGoogle Scholar
  29. 29.
    Zhang YJ, Cheng YT, Grummon DS (2005) Indentation stress dependence of the temperature range of microscopic superelastic behavior of nickel-titanium thin films. J Appl Phys 98:033505. doi:10.1063/1.1994934 CrossRefGoogle Scholar
  30. 30.
    McCormack M, Graebner JE, Tiefel TH, Kammlott GW (1994) Low-temperature thinning of thick chemically vapor-deposited diamond films with a molten Ce-Ni alloy. Diam Relat Mater 3:254–258. doi:10.1016/0925-9635(94)90088-4 CrossRefGoogle Scholar
  31. 31.
    Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindenation—the importance of isothermal contact. Philos Mag 91:1221–1244. doi:10.1080/14786435.2010.496745 CrossRefGoogle Scholar
  32. 32.
    Bei H, George EP, Hay JL, Pharr GM (2005) Influence of indenter tip geometry on elastic deformation during nanoindenation. Phys Rev Lett 95:045501. doi:10.1103/PhysRevLett.95.045501 CrossRefGoogle Scholar
  33. 33.
    Ma D, Ong CW, Wong SF, He J (2005) New method for determining Young’s modulus by non-ideally sharp indentation. J Mater Res 20:1498–1506. doi:10.1557/JMR.2005.0193 CrossRefGoogle Scholar
  34. 34.
    Fischer-Cripps AC (2003) Elastic recovery and reloading of hardness impressions with a conical indenter. Mat Res Soc Symp Proc 750:513–518Google Scholar
  35. 35.
    Tabor D (1951) The hardness of metals. Clarendon, OxfordGoogle Scholar
  36. 36.
    Perriot A, Vandembroucq D, Barthel E (2006) Raman microspectroscopic characterization of amorphous silica plastic behavior. J Am Ceram Soc 89:596–601. doi:10.1111/j.1551-2916.2005.00747.x CrossRefGoogle Scholar
  37. 37.
    Carreker RP Jr, Hibbard WR Jr (1953) Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall 1:654–663CrossRefGoogle Scholar
  38. 38.
    Durst K, Backes B, Göken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater 52:1093–1097. doi:10.1016/j.scriptamat.2005.02.009 CrossRefGoogle Scholar
  39. 39.
    Farrissey LM, Mchugh PE (2005) Determination of elastic and plastic material properties using indentation: Development of method and application to a thin surface coating. Mater Sci Eng, A 399:254–266. doi:10.1016/j.msea.2005.03.109 CrossRefGoogle Scholar
  40. 40.
    Chicot D (2009) Hardness length-scale factor to model nano- and micro-indentation size effect. Mater Sci Eng, A 499:454–461. doi:10.1016/j.msea.2008.09.040 CrossRefGoogle Scholar
  41. 41.
    Yang FZ, Wornyo E, Gall K, King WP (2008) Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. Scanning 30:197–202. doi:10.1002/sca.20074 CrossRefGoogle Scholar
  42. 42.
    Zhaoyang Y, Xianping L (2010) A preliminary study of micro heat conduction by hot-tip tribological probe microscope. Key Eng Mat 437:374–378. doi:10.4028/www.scientific.net/KEM.437.374 CrossRefGoogle Scholar
  43. 43.
    Korte S, Stearn RJ, Wheeler JM, Clegg WJ (2012) High temperature microcompression and nanoindentation in vacuum. J Mater Res 27:167–176. doi:10.1557/jmr.2011.268 CrossRefGoogle Scholar
  44. 44.
    CORNING. Technical Data Sheet. New York. http://www.technicalproductsinc.com/pdf/macor.pdf
  45. 45.
    Leyens C, Peters M (2003) Titanium and titanium alloys: Fundamentals and applications. WILEY-VCH, WeinheimCrossRefGoogle Scholar
  46. 46.
    Szuecs F, Werner M, Sussmann RS, Pickles CSJ, Fecht HJ (1999) Temperature dependence of Young’s modulus and degradation of chemical vapor deposited diamond. J Appl Phys 86:6010–6017. doi:10.1063/1.371648 CrossRefGoogle Scholar
  47. 47.
    Carderelli F (2008) Materials handbook: A concise desktop reference. Springer, New YorkGoogle Scholar
  48. 48.
  49. 49.
    Meyers MA, Chawla KK (1999) Mechanical behaviors of materials. Prentice-Hall, New JerseyGoogle Scholar
  50. 50.
    Lütjering G, Williams JG (2007) Titanium. Springer, BerlinGoogle Scholar
  51. 51.
    Incropera FP, Dewitt DP (1996) Fundamentals of heat and mass transfer. Willey, New YorkGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations