Skip to main content

Identification of Local Viscoplastic Properties in P91 Welds from Full Field Measurements at Room Temperature and 625 °C

Abstract

A methodology to obtain visco-plastic laws in heterogeneous materials with digital image correlation (DIC) is proposed based on tensile and tensile-relaxation tests conducted at room temperature and at 625 °C. Tested samples are manufactured from a P91 weld in which a microstructural heterogeneity translates into graded mechanical properties. To simplify the problem, a classical decomposition of the weld into five different domains is considered. Strain field in each domain is obtained by means of digital image correlation applied to high magnification pictures recorded with an optical long distance microscope. The conducted identifications exhibit key features in the behaviour of each domain in terms of yield stress, ultimate tensile stress and hardening at both room temperature and 625 °C. Experimental fields are compared to the fields provided by finite element simulations. Eventually, the benefit of accounting for transverse strains in the identification procedure is examined, and the robustness of the procedure with addition of noise (representative of experimental conditions) in the measurement is characterized.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Peters WH, Ranson WF, Sutton MA (1983) “Application of digital image correlation to rigid body mechanics”. Opt Eng 22:738–742

    Article  Google Scholar 

  2. 2.

    Meuwissen MHH, Oomens CWJ, Baaijens FPT et al (1998) “Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method”. J Mater Process Technol 75:204–211

    Article  Google Scholar 

  3. 3.

    Cooremen S, Lecompte D, Sol H et al (2008) “Identification of mechanical material behavior through inverse modeling and DIC “. Exp Mech 48:421–433

    Article  Google Scholar 

  4. 4.

    Pierron F, Grediac M (2000) “Identification of the through-thickness moduli of thick composites from whole-field measurements using the Iosipescu fixture: theory and simulations”. Compos Appl Sci Manuf 31:309–318

    Article  Google Scholar 

  5. 5.

    Shen B, Paulino Glaucio H (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cem Concr Compos 33:572–585

    Article  Google Scholar 

  6. 6.

    Wattrise B, Chrysochoos A, Muracciole JM, Némoz-Gaillard M (2001) Kinematic manifestations of localisation phenomena in steels by digital image correlation. Eur J Mech Solid 20:189–211

    Article  Google Scholar 

  7. 7.

    Heripré E, Dexet M, Crépin J et al (2007) Coupling between experimental measurements and polycristal finite element calculations for micromechanical study of metallic materials. Int J Plast 23:1512–1539

    MATH  Article  Google Scholar 

  8. 8.

    Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: equilibrium gap method. Int J Numer Meth Eng 61:189–208

    MATH  Article  Google Scholar 

  9. 9.

    Geymonat G, Hild F, Pagano S (2002) “Identification of elastic parameters by displacement field measurement”, Compte rendus mécanique, Article Number: UNSP S1631-0721(02)01476-6/FLA DOI: 10.1016/S1631-0721(02)01476-6, 330:403–408

  10. 10.

    Latourte F, Chrysochoos A, Pagano S, Wattrisse B (2008) “Elastoplastic behavior identification for heterogeneous loadings and materials”. Exp Mech 48:435–449

    Article  Google Scholar 

  11. 11.

    Pierron F, Avril S, Tran VT (2010) “Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening”. Int J Solid Struct 47:2993–3010

    MATH  Article  Google Scholar 

  12. 12.

    Avril S, Bonnet M, Bretelle AS et al (2008) “Overview of identification Methods of mechanical parameters based on full-field measurements”. Exp Mech 48:381–402

    Article  Google Scholar 

  13. 13.

    Molak RM, Paradowski K, Brynk T et al (2009) Measurement of mechanical properties in a 316 L stainless welded joint. Int J Press Vessel Pip 86:43–47

    Article  Google Scholar 

  14. 14.

    Sutton MA, Han JH, Avril S, Pierron F (2008) Identification of heterogeneous constitutive parameters in a welded specimen: uniform stress and virtual field methods for material property estimation. Exp Mech 48:451–464

    Article  Google Scholar 

  15. 15.

    Sierra G, Wattrisse B, Bordeuil C (2008) Structural analysis of steel to aluminium welded overlap joint by digital image correlation. Exp Mech 48:213–223

    Article  Google Scholar 

  16. 16.

    Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessel Pip 85:30–37

    Article  Google Scholar 

  17. 17.

    Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-Scale Displacement Field Measurements of Compressed Mineral Wool Samples by Digital Image Correlation. Appl Optics 41:6815–6828

    Article  Google Scholar 

  18. 18.

    Bretagne N, Valle V, Dupré JC (2005) Development of the marks tracking technique for strain field and volume variation measurement. NDT & E Int 38:290–298

    Article  Google Scholar 

  19. 19.

    Z-set manual (2007) ONERA: Zebulon.onera.fr, Transvalor/Mines ParisTech and Northwest Numerics, Inc

  20. 20.

    Vivier F (2009) “Fluage à 500 °C d’un joint soudé d’un acier 9Cr-1Mo modifié: Evolution de la microstructure & Comportement mécanique », PhD thesis, Centre des matériaux Mines ParisTech

  21. 21.

    Blach J, Falat L, Ševc P (2008) “Fracture characteristics of thermally exposed 9Cr-1Mo steel after tensile and impact testing at room temperature”. Eng Fail Anal. doi:10.1016/engfailanal.2008.09.2003

  22. 22.

    Laha K, Chandravathi KS, Rao KBS, Mannan L (1995) Hot tensile properties of simulated heat-affected zone microstructures of 9Cr-1Mo weldment. Int J Press Vessel Pip 62:303–311

    Article  Google Scholar 

  23. 23.

    Gaffard V (2004) “Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments”, PhD thesis, Centre des matériaux Mines ParisTech

  24. 24.

    Watanabe T, Tabuchi M, Yamazaki M et al (2006) Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture. Int J Press Vessel Pip 83:63–71

    Article  Google Scholar 

  25. 25.

    Moré JJ (1977) “The Levenberg Marquardt algorithm: implementation an theory”, Numerical analysis, lecture notes in mathematics, 105–116

  26. 26.

    Eggeler G, Coleman M, Peter G et al (1994) Analysis of creep in a weld P91 pressure vessel. Int J Pres Ves Pip 60:237–257

    Article  Google Scholar 

  27. 27.

    Haddadi H, Belhabib S (2008) Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46:185–196

    Article  Google Scholar 

  28. 28.

    Das CR, Albert SK, Bhaduri AK et al (2008) Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr-1Mo steel weld joints. Mater Sci Eng 477:185–192

    Article  Google Scholar 

  29. 29.

    Pan B, Lu Z, Le H (2009) “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation”. Opt Lasers Eng. doi:10.1016/j.optlaseng.2009.08.2010

  30. 30.

    Triconnet K, Derrien K, Hild F, Baptiste D (2009) Parameters choice for optimized digital image correlation. Opt Lasers Eng 47:728–737

    Article  Google Scholar 

Download references

Acknowledgments

Financial and technical support from Electricité de France (EDF), the Chair EDF, GDF Suez, GRT Gaz, Mines ParisTech and Ponts et Chaussées ParisTech called “durability of materials and structures for Energy” is aknowledged

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Touboul.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Touboul, M., Crepin, J., Rousselier, G. et al. Identification of Local Viscoplastic Properties in P91 Welds from Full Field Measurements at Room Temperature and 625 °C. Exp Mech 53, 455–468 (2013). https://doi.org/10.1007/s11340-012-9655-8

Download citation

Keywords

  • Identification
  • Heterogeneous materials
  • Full-Field measurements
  • P91 welds
  • High temperature