Skip to main content

The Role of Residual Stresses in the Performance and Durability of Prestressing Steel Wires

Abstract

Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress fields in cold-drawn steel wires. Work carried out in this field in the past decade, shows the prospects and limitations of residual stress measurement, how the stress relaxation losses and environmentally-assisted cracking are correlated with the profile of residual stresses and how the performance of steel wires can be improved by modifying such a stress profile.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

n :

Diffraction order

d hkl :

Lattice spacing for planes of Miller indices (hkl)

hkl :

Scattering angle

\( {\varepsilon_{{hkl}}} \) :

Longitudinal strain for a given (hkl) set of planes

\( d_{{hkl}}^0 \) :

Stress-free lattice spacing of the (hkl) reflection.

σ 0,2 :

Yield stress

σ max :

Tensile strength

R = σ min / σ max :

Nominal stress ratio in fatigue

References

  1. Embury JD, Fisher RM (1966) The structure and properties of drawn pearlite. Acta Metall 14:147–159

    Article  Google Scholar 

  2. Pickering FB (1978) Physical Metallurgy and the Design of Steels. Applied Science Publishers Ltd., London

    Google Scholar 

  3. Langford G (1977) Deformation of pearlite. Metall Trans A 8:861–875

    Article  Google Scholar 

  4. Taleff EM, Lewandowski JJ, Pourladian B (2002) Microstructure-property relationships in pearlitic eutectoid and hypereutectoid carbon steels. JOM 54:25–30

    Article  Google Scholar 

  5. Elices M, Maeder G, Sánchez-Gálvez V (1983) Effect of surface residual stress on hydrogen embrittlement of prestressing steels. Br Corros J 18:80–81

    Google Scholar 

  6. Llorca J, Sánchez-Gálvez V (1987) Numerical determination of the influence of residual stresses on fatigue. Proceedings of the International Conference in Computational Plasticity, Barcelona, Pineridge Press Limited, pp 1123–1136

    Google Scholar 

  7. van Acker K, Root J, van Houtte P, Aernoudt E (1996) Neutron diffraction measurement of the residual stress in the cementite and ferrite phases of cold-drawn steel wires. Acta Mater 44:4039–4049

    Article  Google Scholar 

  8. He S, Van Bael A, Li SY, Van Houtte P, Mei F, Sarban A (2003) Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction. Mater Sci Eng, A 346:101–107

    Article  Google Scholar 

  9. Kanie A, Tomota Y, Torii S, Kamiyama T (2004) Elastic strains of cementite in a pearlite steel during tensile deformation measured by neutron diffraction. ISIJ Int 44:1952–1956

    Article  Google Scholar 

  10. Martinez-Perez ML, Mompean FJ, Ruiz-Hervias J, Borlado CR, Atienza JM, García-Hernandez M, Elices M, Gil Sevillano J, Peng RL, Buslaps T (2004) Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction. Acta Mater 52:5303–5313

    Article  Google Scholar 

  11. Suzuki T, Tomota Y, Isaka M, Moriai A, Minakawa N, Morii Y (2004) Strength anisotropy and residual stress in drawn pearlite steel wire. ISIJ Int 44:1426–1430

    Article  Google Scholar 

  12. EHE-08, Spanish Code on Structural Concrete (2008). Ministry of Public Works, Spain. http://www.fomento.es/mfom/lang_castellano/organos_colegiados/cph/instrucciones/ehe08ingles/

  13. Noyan JC, Cohen JB (1987) Residual stress measurement by diffraction and interpretation. Springer, Berlin

    Google Scholar 

  14. Belassel M, Ji V, Lebrun JL, Gergaud P, Francois M, Bessiere M (1994) Analysis of the mechanical behavior of materials through the 2nd and 3rd-order stress determination. J Phys IV 4:261–264

    Article  Google Scholar 

  15. Willemse PF, Naughton BP, Verbraak CA (1982) X-ray residual stress measurements on cold-drawn steel wire. Mater Sci Eng 56:25–37

    Article  Google Scholar 

  16. Zolotorevsky NY, Krivonosova NY (1996) Effect of ferrite crystals plastic anisotropy on residual stresses in cold-drawn steel wire. Mater Sci Eng, A 205:239–246

    Article  Google Scholar 

  17. Ruiz J, Atienza JM, Elices M (2003) Residual stresses in wires: influence of wire length. J Mater Eng Perform 12:480–489

    Article  Google Scholar 

  18. Hanabusa T, Fukura J, Fujiwara H (1969) X-ray stress measurement of the cementite phase in steels. B JSME 13:931–939

    Article  Google Scholar 

  19. Nishioka K, Hanabusa T, Fujiwara H (1974) Theory of the X-ray residual stress analysis. Scripta Metall 8:1349–1350

    Article  Google Scholar 

  20. Nishida M, Hanabusa T, Fujiwara H (1989) Residual microstress development in two-phase materials due to tensile deformation. J JSMS 38:576–581 (in Japanese)

    Google Scholar 

  21. Daymond MR, Priesmeyer HG (2002) Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling. Acta Mater 50:1613–1626

    Article  Google Scholar 

  22. Tomota Y, Lukas P, Neov D, Harjo S, Abe YR (2003) In situ neutron diffraction during tensile deformation of a ferrite-cementite steel. Acta Mater 51:805–817

    Article  Google Scholar 

  23. Sawamiphakdi K, Kropp PK, Lahoti GD (1990) Investigation of residual stresses in drawn wire by the finite element method. J Eng Mater Technol 112:231–235

    Article  Google Scholar 

  24. Gerhardt J, Tekkaya AE (1987) Applications of the finite element method on the determination of residual stresses in drawing and extrusion. Computational Plasticity, Proceedings of the International Conference, Barcelona, Pineridge Press Limited, pp 1037–1050

    Google Scholar 

  25. Hamada T, Hirouchi T, Akiyama M (2000) A numerical study of temperature in a fine high carbon steel wire subjected to high speed drawing. Wire J Int June 2000:102–113

    Google Scholar 

  26. Ruiz-Hervias J, Luzin V, Prask H, Gnaeupel-Herold T, Elices M (2006) Effect of thermo-mechanical treatments on residual stresses measured by neutron diffraction in cold-drawn steel rods. Mat Sci Eng A 435–436:725–735

    Article  Google Scholar 

  27. Gil-Sevillano J (1975) Room temperature plastic deformation of pearlitic cementite. Mater Sci Eng 21:221–225

    Article  Google Scholar 

  28. Gil-Sevillano J, Van Houtte P, Aernoudt E (1978) Plastic anisotropy of pearlitic ferrite. Proceedings ICOTOM 5, Gotstein G, Lücke K. Eds. Springer Verlag, II, pp 495–504

  29. Atienza JM, Ruiz-Hervias J, Martínez-Perez ML, Mompean FJ, Garcia-Hernandez M, Elices M (2005) Residual stresses in cold drawn pearlitic rods. Scripta Mater 52:1223–1228

    Article  Google Scholar 

  30. Atienza JM, Martinez-Perez ML, Ruiz-Hervias J, Mompean FJ, Garcia-Hernandez M, Elices M (2005) Residual stresses in cold drawn ferritic rods. Scripta Mater 52:305–309

    Article  Google Scholar 

  31. Atienza JM (2001) Residual stresses in cold drawn steel wires. Ph.D. Dissertation, Universidad Politecnica de Madrid, Spain (in Spanish)

  32. Ruiz-Hervias J, Atienza JM, Elices M, Oliver EC (2008) Optimisation of post-drawing treatments by means of neutron diffraction. Mat Sci Eng A 480:439–448

    Article  Google Scholar 

  33. Yang F, Jiang JQ, Fang F, Wang Y, Ma C (2008) Rapid determination of residual stress profiles in ferrite phase of cold-drawn wire by XRD and layer removal technique. Mat Sci Eng A 486:455–460

    Article  Google Scholar 

  34. Yang F, Wang Y, Jiang JQ, Fang F, Ma C, Zhao KL, Li W (2008) Stress evolution of cold-drawn pearlitic steel wire subjected to uniaxial tension. Mat Sci Eng A 487:468–472

    Article  Google Scholar 

  35. Dölle H, Hauk V (1978) Influence of mechanical anisotropy of polycrystal (texture) upon stress evaluation by means of X-rays. Z Metallkde 69:410–417

    Google Scholar 

  36. Van Baal CM (1983) The Influence of Texture on the X-Ray Determination of Residual Strains in Ground or Worn Surfaces. Phys stat sol (a) 77:521–526

    Article  Google Scholar 

  37. Brakman CM (1983) Residual stresses in cubic materials with orthorhombic or monoclinic specimen symmetry—influence of texture on psi-splitting and non-linear behaviour. J Appl Cryst 16:325–340

    Article  Google Scholar 

  38. Barral M, Lebrun JL, Sprauel JM et al (1987) X-ray macrostress determination on textured material—use of the ODF for calculating the X-ray compliances. Metall Trans A 18:1229–1238

    Article  Google Scholar 

  39. Hauk V (1997) Structural and residual stress analysis by nondestructive methods. Elsevier, Amsterdam

    MATH  Google Scholar 

  40. Dawson PR, Boyce DE, Hale R, Durkot JP (2005) An isoparametric piecewise representation of the anisotropic strength of polycrystralline solids. Int J Plast 21:251–283

    MATH  Article  Google Scholar 

  41. Miller MP, Park JS, Dawson PR, Han TS (2008) Measuring and modeling distributions of stress state in deforming polycrystals. Acta Mater 56:3927–3939

    Article  Google Scholar 

  42. Atienza JM, Ruiz-Hervias J, Caballero L, Elices M (2006) Residual stresses and durability in cold drawn eutectoid steel wires. Met Mater Int 13:139–143

    Article  Google Scholar 

  43. Atienza JM, Elices M (2003) Influence of residual stresses in the tensile test of cold drawn wires. Mater Struct 36:548–552

    Google Scholar 

  44. Goes B, Gil-Sevillano J, D’Haene UD (1999) Modelling the evolution of residual stresses during tensile testing of elastoplastic wires subjected to a previous bending operation. Int J Mech Sci 41:1031–1050

    MATH  Article  Google Scholar 

  45. CEB-FIP (1990) Model Code 1990, Lausanne, (1991). ASTM-A421 (1991), EHE-UNE 36094 (1994), BS-2691 (1991)

  46. Lin TY, Burns NH (1981) Design of prestressed concrete structures. John Wiley and Sons Eds, New York

    Google Scholar 

  47. Zeren A, Zeren M (2003) Stress relaxation properties of prestressed steel wires. J Mater Process Tech 141:86–92

    Article  Google Scholar 

  48. Atienza JM, Elices M (2004) Influence of residual stresses in the stress relaxation of cold drawn wires. Mater Struct 37:301–304

    Google Scholar 

  49. Atienza JM, Elices M (2007) Role of residual stresses in the stress relaxation of prestressed concrete wires. J Mater Civ Eng 19:703–707

    Article  Google Scholar 

  50. CEB-FIP (1978) Model Code for concrete structures. Bulletin d’Information 124–125 F, Paris

  51. McClung RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30:173–205

    Article  Google Scholar 

  52. Llorca J, Sánchez-Gálvez V (1987) Fatigue threshold determination in high strength cold drawn eutectoid wires. Eng Fract Mech 26:869–882

    Article  Google Scholar 

  53. Llorca J, Sanchez-Galvez V (1989) Fatigue limit and fatigue life prediction in high strength cold drawn eutectoid steel wires. Fatigue Fract Eng Mater Struct 12:31–45

    Article  Google Scholar 

  54. Katagiri K, Sato T, Shin HS, Takahashi L, Mori H, Sasaki S, Tashiro H (1997) Effects of drawing strain and bluing on the fatigue strength of eutectoid steel wires. Fatigue Fract Eng Mater Struct 20:1677–1686

    Article  Google Scholar 

  55. Katagiri K, Sato T, Kasaba K, Sasaki S, Tashiro H (1999) Effects of post-drawing treatments on the fatigue strength of eutectoid steel wires. Fatigue Fract Eng Mater Struct 22:753–760

    Google Scholar 

  56. Taerwe L (ed) (2001) Durability of post-tensioning tendons. Proc. 1st. FIB Workshop, Ghent, Belgium

    Google Scholar 

  57. Elsener B (Ed.) (2004) Durability of post-tensioning tendons. Proc. 2nd FIB Workshop, Zurich, Switzerland

  58. Enos DG, Scully JR (2002) A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel. Metall Mater Trans A 33:1151–1166

    Article  Google Scholar 

  59. FIP-78, International Federation for Prestressing (1978) Stress Corrosion Cracking Resistance Test for Prestressing Tendons. Technical Report No. 5, FIP, Wexham Springs, Slough, UK

  60. ISO Standard 15630–3 (2002) Steel for Reinforcement and Prestressing of Concrete. Test Methods, Part 3: Prestressing Steel. International Organization for Standardization [ISO], Geneva, Switzerland

  61. Elices M, Caballero L, Valiente A, Ruiz-Hervias J, Martin A (2008) Hydrogen embrittlement of steels for prestressing concrete: The FIP and DIBt tests. Corros 64:164–174

    Article  Google Scholar 

  62. Parkins RN, Elices M, Sánchez-Gálvez V, Caballero L (1982) Environment sensitive cracking of prestressing steels. Corros Sci 22:379–405

    Article  Google Scholar 

  63. Toribio J (1998) Role of crack-tip residual stresses in stress corrosion behaviour of prestressing steel. Constr Build Mater 12:283–287

    Article  Google Scholar 

  64. Toribio J (1998) Residual stress effects in stress corrosion cracking. J Mater Eng Perform 7:173–182

    Article  Google Scholar 

  65. Elices M, Ruiz J, Atienza JM (2004) Influence of residual stresses on hydrogen embrittlement of cold-drawn wires. Mater Struct 37:305–310

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Ministerio de Fomento, by means of the “Durability of prestressed concrete tendons” grant, and the Ministerio de Educación, through the FEDER 2FD1997-1513 grant. This work was also supported by the CICYT MAT 2003–00836 and ENE2005-06478/CON projects. The present work was conducted within the framework provided by the projects DUMEINPA, sponsored by the Comunidad de Madrid, Spain, and SEDUREC, integrated in the Spanish national research programme CONSOLIDER-INGENIO 2010. The authors are indebted to Dr. María Martínez, Dr. Mar García and Dr. Federico Mompeán for their contribution to the neutron and synchrotron measurements, and Dr. Luis Caballero for the stress corrosion tests. Help and useful comments from Mr. Luis del Pozo, Emesa Trefilerías, and Mr. Javier del Río, from Bekaert, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ruiz-Hervias.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atienza, J.M., Ruiz-Hervias, J. & Elices, M. The Role of Residual Stresses in the Performance and Durability of Prestressing Steel Wires. Exp Mech 52, 881–893 (2012). https://doi.org/10.1007/s11340-012-9597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-012-9597-1

Keywords

  • Residual stresses
  • Pearlitic steel
  • Cold drawing
  • Stress relaxation
  • Stress corrosion
  • Fatigue
  • Prestressing wires