Skip to main content
Log in

Contribution of Kinematical and Thermal Full-field Measurements for Mechanical Properties Identification: Application to High Cycle Fatigue of Steels

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this work is to extend the use of unconventional tests and full field measurements (kinematical and thermal) to the identification of the effect of a wide plastic pre-strain range on the high cycle fatigue properties of a dual-phase steel. An unconventional specimen is designed. The geometry of this specimen permits a constant gradient of pre-strain to be obtained after a monotonic tensile test. Then, a self-heating test under cyclic loading is carried out on the pre-strained specimen. During this cyclic test, the thermal field is measured using an infrared camera. Finally, a suitable numerical strategy is proposed to identify a given thermal source model taking into account the influence of plastic pre-strain. The results show that, with the unconventional test and the procedure developed in this work, the influence of a plastic pre-strain range on fatigue properties can be identified by using only one specimen when, for a classical fatigue campaign, a great number of specimens is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Weller R, Shepard B (1948) Displacement measurement by mechanical interferometry. Proc Soc Exp Stress Anal 6(1):35–38

    Google Scholar 

  2. Jones R, Wikes C (1989) Holographic and speckle interferometry. Cambridge University Press, Cambridge

    Google Scholar 

  3. Burt PJ et al (1982) Local correlation measures for motion analysis: a comparative study. In: Proc. IEEE conf. on pattern recognition and image processing, pp 269–274

  4. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  5. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital image correlation techniques to experimental mechanics. Exp Mech 3(25):232–244

    Article  Google Scholar 

  6. Réthoré J, Tinnes JP, Roux S, Buffière JY, Hild F (2008) Extended three-dimensional digital image correlation (X3DDIC). C R Méc 336(8):643–649

    Google Scholar 

  7. Hild F, Roux S (2006) Measuring stress intensity factors with a camera: integrated digital image correlation (I-DIC). C R Méc 334(1):8–12

    Article  Google Scholar 

  8. Perié JN, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42(3):318–328

    Article  Google Scholar 

  9. Rastogi PK (2000) Principles of holographic interferometry and speckle metrology. Top Appl Phys Photomechanics 77:103–151

    Article  Google Scholar 

  10. Berthel B, Chrysoochoos A, Wattrisse B, Galtier A (2008) Infrared image processing for the calorimetric analysis of fatigue phenomena. Exp Mech 48(1):79–90

    Article  Google Scholar 

  11. Chrysochoos A, Louche H (2000) Infrared image processing to analyse the calorific effects accompanying strain localization. Int J Eng Sci 38(16):1759–1788

    Article  Google Scholar 

  12. Medgenberg J, Ummenhofer T (2007) Detection of localized fatigue damage in steel by thermography, In: Knettel KM, Vavilov VP, Miles JJ (eds) Proceedings of thermosense XXIX, vol 6541, pp 17.1–17.11

  13. Poncelet M, Doudard C, Calloch S, Hild F, Weber B (2010) Dissipation measurements in steel sheets under cyclic loading by use of infrared microthermography. Strain 46:101–116

    Article  Google Scholar 

  14. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M et al (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  15. Roux S, Hild F (2008) Digital Image Mechanical Identification (DIMI). Exp Mech 48(4):495–508

    Article  Google Scholar 

  16. Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F et al (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Article  Google Scholar 

  17. Perié JN, Leclerc H, Roux S, Hild F (2009) Digital image correlation and biaxial test on composite material for anisotropic damage law identification. Int J Solids Struct 46(11–12):2388–2396

    Article  MATH  Google Scholar 

  18. Doudard C, Calloch S, Hild F, Roux S (2010) Identification of heat source fields from infra-red thermography: determination of ’self-heating’ in a dual-phase steel by using a dog bone sample. Mech Mater 42(1):55–62

    Article  Google Scholar 

  19. Libertiny GZ, Topper TH, Leis BN (1977) The effect of large pre-strains on fatigue. Exp Mech 17:64–68

    Article  Google Scholar 

  20. Nagase Y, Suzuki S (1992) On the decrease of fatigue limit due to small prestrain. J Eng Mater Technol 114:317–322

    Article  Google Scholar 

  21. Gustavsson A, Melander A (1995) Variable-amplitude fatigue of a dual-phase sheet steel subjected to prestrain. Int J Fatigue 16:503–509

    Article  Google Scholar 

  22. Uemura T (1998) A fatigue life estimation of specimens excessively prestrained in tension. Fatigue Fract Eng Mater Struct 21:151–158

    Article  MathSciNet  Google Scholar 

  23. Nakajima K, Kamiishi S, Yokoe M, Miyata T (1999) The influence of microstructural morphology and prestrain on fatigue crack propagation of dual-phase steels in the near-threshold region. ISIJ Int 39(5):486–492

    Article  Google Scholar 

  24. Munier R, Doudard C, Calloch S, Weber B (2010) Towards a faster determination of high cycle fatigue properties taking into account the influence of a plastic pre-strain from self-heating measurements. Procedia Eng 2(1):1741–1750

    Article  Google Scholar 

  25. Doudard C (2004) Détermination rapide des propriétés en fatigue á grand nombre de cycles á partir d’essais d’auto-échauffement, PhD ENS Cachan

  26. Stromeyer CE (1914) The determination of fatigue limits under alternating stress conditions. Proc R Soc Lond A 90:411–425

    Article  Google Scholar 

  27. Moore HF, Kommers JB (1921) Fatigue of metals under repeated stress. Chem Metall Eng 25:1141–1144

    Google Scholar 

  28. Morabito AE, Chrysochoos A, Dattoma V, Gallietti U (2007) Analysis of heat sources accompanying the fatigue of 2024 T3 aluminium alloys. Int J Fatigue 29(5):977–984

    Article  Google Scholar 

  29. Luong MP (1992) Infrared thermography of fatigue in metals. SPIE 1682:222–233

    Article  Google Scholar 

  30. Luong MP (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater 28(1–4):155–163

    Article  Google Scholar 

  31. La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22(1):65–73

    Article  Google Scholar 

  32. Liaw PK, Wang H, Jiang L, Yang B, Huang JY, Kuo RC, Huang JC (2000) Thermographic detection of fatigue damage of pressure vessel at 1 and 20 Hz. Scr Mater 42(4):389–395

    Article  Google Scholar 

  33. Doudard C, Calloch S, Hild F, Cugy P, Galtier A (2004) Identification of the scatter in high cycle fatigue from temperature measurements. C R Méc 332(10):795–801

    Google Scholar 

  34. Doudard C, Calloch S, Cugy P, Galtier A, Hild F (2005) A probabilistic two-scale model for high-cycle fatigue life predictions. Fat Fract Eng Mat Struct 28:279–288

    Article  Google Scholar 

  35. Cura F, Curti G, Sesana R (2005) A new iteration method for the thermographic determination of fatigue limit in steels. Int J Fatigue 27(4):453–459

    Article  Google Scholar 

  36. Galtier A, Bouaziz O, Lambert A (2002) Influence de la microstructure des aciers sur leurs propriétés mécaniques. Méc Ind 3(5):457–462

    Google Scholar 

  37. Mareau C, Favier V, Weber B, Galtier A (2009) Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading. Int J Fatigue 31(8–9):1407–1412

    Article  Google Scholar 

  38. Poncelet M (2007) Multiaxialité, hétérogénéités intrinsèques et structurales des essais d’auto-échauffement et de fatigue a grand nombre de cycles. PhD, ENS Cachan

  39. Poncelet M, Doudard C, Calloch S, Weber B, Hild F (2010) Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue. J Mech Phys Solids 58(4):578–593

    Article  Google Scholar 

  40. Mareau C (2007) Modélisation micromécanique de l’échauffement et de la microplasticité des aciers sous sollicitations cycliques. PhD, ENS Cachan

  41. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyse the multiaxial behavior of rubberlike materials. Eur J Mech A Solids 20(2):168–187

    Article  Google Scholar 

  42. Hild F, Roux S (2006) Digital Image Correlation: from displacement measurements to identification of elastic properties—a review. Strain 42(2):69–80

    Article  Google Scholar 

  43. Berthaud Y, Scholz J, Thesing J (1996) Méthodes optiques et acoustiques de mesure des caractéristiques mécaniques. C R Méc 324:77–80

  44. Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multiscale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt 41(32):6815–6828

    Article  Google Scholar 

  45. Connesson N, Maquin F, Pierron F (2011) Experimental energy balance during the first cycles of cyclically loaded specimens under the conventional yield stress. Exp Mech 51(1):23–44

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank ArcelorMittal for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Doudard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munier, R., Doudard, C., Calloch, S. et al. Contribution of Kinematical and Thermal Full-field Measurements for Mechanical Properties Identification: Application to High Cycle Fatigue of Steels. Exp Mech 52, 743–756 (2012). https://doi.org/10.1007/s11340-011-9540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9540-x

Keywords

Navigation