Skip to main content
Log in

Pressure Dependent Properties of a Compressible Polymer

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the investigations of a porous carbon black-filled rubber, tested with regard to its pressure and tension behaviour. In the tension range only uniaxial tests are performed while in the pressure range uniaxial as well as hydrostatic tests are performed. The uniaxial experiments are carried out in a custom-made uniaxial device and the hydrostatic tests in a pressure chamber which is specially developed for this application. The construction and use of the pressure chamber is clearly described in this paper. All experiments are related to the basic elasticity of the material. The viscoelastic behaviour is completely disregarded at this point. Not only the experiments are discussed, also the modelling of the material is looked at. The tested cellular rubber is composed of an incompressible solid phase and a compressible gas phase. For that reason a so-called structural compressibility is observed. The compressible behaviour of cellular rubber is an important property. So the main focus of the paper is on the pressure tests and the simulation of these. The existing material models for rubber like materials only deal with incompressible rubber structures. To represent the compressible behaviour, the Theory of Porous Media is used. The constitutive model is based on a polynomial approach for an incompressible material. This is complemented by a volumetric expansion term with a point of compaction to model the structural compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vroomen G (2004) EPDM-Moosgummi für die Tür- und Fensterdichtungen von Kraftfahrzeugen. GAK 3(57):163–176

    Google Scholar 

  2. Chen W, Lu F, Winfree N (2002) High-strain-rate compressive behavior of a rigid polyurethane foam with various densities. Exp Mech 42:65–73

    Article  Google Scholar 

  3. Dick JS, Annicelli RA (1999) Variation der Vernetzungs- und Treibreaktion für die Steuerung von Zellendichte und -struktur von zelligen Vulkanisaten. GAK 52(4):297–308

    Google Scholar 

  4. Fuchs E, Reinartz KS (2001) Optimierung der Herstellung von Moosgummi. GAK 54(4):245–251

    Google Scholar 

  5. Haberstroh E, Kremers A (2004) Expansion chemisch geschäumter Kautschukmischungen. Kautsch Gummi Kunstst 3(57):105–108

    Google Scholar 

  6. Haberstroh E, Kremers A, Epping K (2005) Extrusion von physikalisch geschäumten Kautschukprofilen. Kautsch Gummi Kunstst 9(58):449–454

    Google Scholar 

  7. Diebels S (1999) A micropolar theory of porous media: constitutive modelling. Transp Porous Med 34:193–208

    Article  Google Scholar 

  8. Diebels S (2000) Mikropolare Zweiphasenmodelle: Modellierung auf der Basis der Theorie Poröser Medien. Habilitationsschrift, Institut für Mechanik (Bauwesen), Nr. II-4, Universität Stuttgart

  9. Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Hutter K (ed) Continuum mechanics in environmental sciences, CISM International Centre for Mechanical Sciences, vol 337. Springer, Berlin, pp 313–402

    Google Scholar 

  10. Avanzini A (2005) Mechanical characterization and modeling of polymeric materials for high-pressure sealing. Exp Mech 45:53–64

    Article  Google Scholar 

  11. Stoll RD, Freudenthal AM, Heller RA (1967) Effects of mean pressure on the behavior of a filled elastomer—immediate goal of the research described in this paper is to gain further insight into the complex mechanical properties of filled elastomers with the ultimate purpose of developing a reliable analytical model. Exp Mech 7:339–345

    Article  Google Scholar 

  12. Bischoff JE, Arruda EM, Grosh K (2001) A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem Technol 74:541–559

    Article  Google Scholar 

  13. Attard MM, Hunt GW (2004) Hyperelastic constitutive modeling under finite strain. Int J Solids Struct 41:5327–5350

    Article  MATH  Google Scholar 

  14. Clapeyron BPE (1834) Puissance motrice de la chaleur. J Ec R Polytech 14:153–190

    Google Scholar 

  15. Yeoh OH, Flemming PD (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J Polym Sci, Part B, Polym Phys 35:1919–1931

    Article  Google Scholar 

  16. Koprowski-Theiss N, Johlitz M, Diebels S (2010) Modelling of a cellular rubber with nonlinear viscosity functions. Exp Mech. doi:10.1007/s11340-010-9376-9

  17. Seibert H (2010) Konstruktion und Steuerung einer Triaxzelle zur Untersuchung des Kompressionsverhaltens gefüllter Elastomere. Studienarbeit

  18. Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  19. de Boer R. Theory of porous media. Springer, Berlin

  20. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Rat Mech Anal 13:167–178

    Article  MathSciNet  MATH  Google Scholar 

  21. Ehlers W, Eipper G (1999) Finite elastic deformations in liquid-saturated and empty porous solids. Transp Porous Med 34:179–191

    Article  MathSciNet  Google Scholar 

  22. Scheday G (2003) Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmessmethoden. Dissertation, Bericht-Nr. I-11 des Instituts für Mechanik, Lehrstuhl I, Universität Stuttgart

  23. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors greatfully acknowledge the funding by the German Science Foundation (DFG) under the grant DI 930/9-1. Special thanks of the authors go to Mr. Henning Seibert from the Chair of Applied Mechanics at Saarland University, Saarbrücken, for the construction of the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koprowski-Theiß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprowski-Theiß, N., Johlitz, M. & Diebels, S. Pressure Dependent Properties of a Compressible Polymer. Exp Mech 52, 257–264 (2012). https://doi.org/10.1007/s11340-011-9489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9489-9

Keywords

Navigation